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● 1.5 m telesope on Mount Palomar in south California

● Transient sky survey started in March 2009

● Data mostly in r band (centered at 6580 Å)

Prince-Whelan+, 13

● 28000 AGNs brighter than r=19.1

● 2.4 million data points = large calibrated single band dataset!



  

● AGN light-curves were re-calibrated 

● We search for zeropoints which minimize the scatter of 
reference objects (stars) – based on Ofek+ 2011

Re-calibration of survey



  

● AGN light-curves were re-calibrated 

● We search for zeropoints which minimize the scatter of 
reference objects (stars) – based on Ofek+ 2011

Re-calibration of survey



  

● AGN light-curves were re-calibrated 

● We search for zeropoints which minimize the scatter of 
reference objects (stars) – based on Ofek+ 2011

● We achieve excellent performance; excess variance at short time-
scales is consistent with zero for vast majority of AGNs

● Re-calibrated data is public: https://github.com/nevencaplar/PTF_AGN 

Re-calibration of survey



  

●  SF2 (structure function)2 analysis

– Variance of magnitude difference as a function of time lag between measurements

– We use the method on ensemble, sample of AGNs with similar physical properties

 

● Power spectral density (PSD) analysis

– Variability power per temporal frequency

– We use CARMA modeling algorithm from Kelly+ (2015)

– Used on well sampled, single objects 
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● Wavelength 
correction 
estimated from 
SDSS dataset to 
normalize to 
4000 A

● No correlation 
with redshift

● Little to no 
correlation with 
mass

● Clear 
dependence with 
luminosity
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● Alternative way 
to interpret the 
data – τ, time 
to reach certain 
variability 

● From data  
τ L∝ 0.4

● Simplest thin 
disk model and 
time scale of 
variability 
identified with 
Kelperian time 
scale   

τ L∝ 0.5



  

● Power spectral density (PSD) analysis

– Variability power per temporal frequency

– We use CARMA modeling algorithm from Kelly+ (2014)

– Used on single, well sampled, objects 

 

●  SF2 (structure function)2 analysis

– Variance of magnitude difference as a function of time lag between measurements

– We use the method on ensemble, sample of AGNs with similar physical properties
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 Simm+, 15

● New method → testing needed

● PSD estimates are highly 
uncertain → need a large 
statistical sample



  
● Steepening of the slope with mass/luminosity 



  
● Steepening of the slope with mass/luminosity 



  

● Same steepening effect can 
be seen in the structure 
function analysis!

● Lines are deduced from PSD 
analysis, not fits!



  

● Same steepening effect can 
be seen in the structure 
function analysis!

● Lines are deduced from PSD 
analysis, not fits!

● Effect also seen in the PSD 
analysis in PTF, SDSS & Pan-
STARRS1 (Simm+ 16, and 
this work)

● Effect now seen with the SF 
analysis in PTF & SDSS 
(Kozlowski 16, and this work)



  Kepler breaks here



  

● Steep PSDs are more likely to mimic periodic light-curves



  

Summary 

● PTF survey offers unique way to study AGN variability
– Recalibrated data at https://github.com/nevencaplar/PTF_AGN 

● Anti-correlation of variability with luminosity
– If time to reach certain variability interpreted as time-scale τ, then τ L∝ 0.4, similar to the 

prediction of the simplest model

● Evidence for steepening of the PSD slopes with mass
– “Explanation” for Kepler steep slopes

– More likely to create false periodicities



  



  

● Search for binaries of 
supermassive black holes 
with a sub-parsec separation

● Expected as a consequence 
of galaxy mergers

Charisi+ 16

Graham+ 15



  
● But stohastic process can 

also mimic perodicity! Vaughan+ 16

Real uniform periods

Observed periods of candidates

QSO-like variability

QSO-like variability
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