Rates of Tidal Disruption Flares in Post-Starburst Galaxies

Nicholas Stone Einstein Fellow, Columbia University St. Thomas, July 13th 2017

Brian Metzger (Columbia)

Sjoert van Velzen (Johns Hopkins)

Aleksey Generozov (Columbia grad)

Tidal Disruption Overview

- Many applications:
 - Tools to measure SMBH mass (see Guillochon talk)
 - Possibly SMBH spin (Stone & Loeb 12)
 - Accretion/jet launching physics laboratories (discussion)
 - Rates encode stellar dynamical processes
- A few strong candidate flares per year, soon to be tens (ZTF) hundreds (eROSITA), and thousands (LSST)

TDE Rates

- Optical/X-ray/UV rate estimates find \Re_{obs} ~1-10 x 10⁻⁵/gal/yr
- Theoretical rate estimates set by diffusion of stars into loss cone
 - Two-body relaxation ubiquitous
- Theoretical rates calculated semi-empirically
 (NCS & Metzger 16):
 - Take sample of 140 nearby galaxies
 - Deproject I(R) -> ρ(r) [assumes sphericity]
 - Invert $\rho(r) \rightarrow f(\epsilon)$ [assumes isotropy]
 - Compute diffusion coefficients μ(ε), loss cone flux A(ε)
 [assumes Kroupa IMF]
- $\Re_{obs} < \Re_{theory} \sim few \times 10^{-4}/gal/yr$?
 - But see van Velzen 2017!

(Freitag & Benz 02)

Unusual Host Galaxy Preferences

- Most optical TDE hosts are rare poststarburst/E+A galaxies (Arcavi+14, French+16, 17, Law-Smith+17)
- Possible explanations:
 - Binary SMBHs; chaotic 3-body scatterings (Arcavi+14)
 - Central overdensities; short relaxation times (NCS & Metzger 16)
 - Radial anisotropies: low angular momentum systems (NCS+ in prep)
 - Eccentric nuclear disks: secular instabilities (Madigan+17)
 - Nuclear triaxiality: collisionless effects
- How to discriminate between these?
 Delay time distributions

(French+ 16)

Radial Orbit Anisotropies

- One possibility: anisotropic velocities with radial bias
- Consider constant anisotropy $\beta = 1 T_{\perp}/2T_{r}$
 - $\beta < \beta_{ROI} \sim 0.6$ to avoid radial orbit instability
- Solve 1D Fokker-Planck equation in angular momentum space:

$$\frac{\partial f}{\partial \tau} = \frac{1}{4j} \frac{\partial}{\partial j} \left(\frac{j \frac{\partial f}{\partial j}}{\frac{\partial f}{\partial j}} \right)$$

• TDE rate dN/dt ~ $t^{-\beta}$ in an isotropizing cusp

TDEs in Radially Biased Galaxies

(NCS+ in prep)

The Anisotropic DTD

(NCS+ in prep)

SMBH Binaries

- Nascent SMBH binaries see increase in TDE rate:
 - Kozai effect (Ivanov+05)
 - Chaotic 3-body scatterings (Chen+11)
- Enhancement huge ($\Re \sim 10^{-1}/yr$) but short-lived ($\sim 10^5 yr$)
 - Occurs before final parsec problem
- Disfavored by:
 - Total rate
 - Mass distribution
 - Fine-tuned timescales

SMBHB Cumulative Distribution

(**NCS**+ in prep)

Stellar Overdensities

- Overdense nuclei (ρ=ρ_{infl}(r/r_{infl})^{-γ}) can have short two-body relaxation times if they are overconcentrated or ultrasteep
- Suggestive evidence: color gradients in E+As (Pracy+13)
- Overconcentrated (r_{infl} low):
 - High, slowly evolving TDE rate
- Ultrasteep (γ large):
 - + If γ >7/4, profile flattens with time (Bahcall & Wolf 76)
 - + If γ >9/4, TDE rate diverges inward
 - + Transition point $r_{BW} \sim t^{1/(\gamma-3/2)}$
 - dN/dt ~ t^{-(4γ-9)/(2γ-3)} / ln(t)

Overdense TDE Rates

NGC 3156: A Nearby E+A

NGC 3156: Modeling

(NCS & van Velzen 16)

- Optimal target: 22 Mpc, $M_{BH} = 3 \times 10^6 M_{\odot}$
- Archival HST observations, I(R) fit (Krajnovic+13)
 - + NGC 3156 extreme outlier in central profile: I(R) α R^{-1.78}?

NGC 3156: Modeling

(NCS & van Velzen 16)

- Optimal target: 22 Mpc, $M_{BH} = 3 \times 10^6 M_{\odot}$
- We fit an I(R) model to archival HST observations
 - + NGC 3156 major outlier in central profile: I(R) α R^{-1.2}
- TDE rate *R*~1 x10⁻³/yr!
 - Will test further with upcoming HST observations