Insights into the Supermassive Black-Hole Accretion Process from X-ray and Optical Time-Domain Surveys

Ohad Shemmer
University of North Texas

Part I

AGN Variability in X-ray Surveys

Why X-ray?

X-ray variations are typically faster and stronger relative to those in the optical. X-ray monitoring: more efficient for studying continuum variations in distant AGN.

X-ray variability depends on L and M_{BH} in a complicated way.

Broken (or bending) power-law model for the power spectral density (PSD) of AGN X-ray variability; analogous to X-ray binaries (e.g., Markowitz et al. 2003; Done & Gierliński 2005; McHardy 2006). The PSD normalization may depend on $L/L_{\rm Edd}$ (e.g., Ponti et al. 2012).

What we measure is the **Excess Variance** (e.g., Nandra et al. 1997; Turner et al. 1999):

$$\sigma_{\rm rms}^2 = \frac{1}{N_{\rm obs} \langle f \rangle^2} \sum_{i=1}^{N_{\rm obs}} \left[(f_i - \langle f \rangle)^2 - \sigma_i^2 \right]$$

Why X-ray?

X-ray variability depends on L and $M_{\rm BH}$ in a complicated way.

X-ray Variability Dependence on L, MBH

Luminous AGN show milder and slower X-ray variations with respect to lower luminosity sources. Primary driver could be $M_{\rm BH}$.

X-ray Variability as a Cosmological Probe?

The hope is to use X-ray variability as a luminosity/distance indicator

X-ray Variability as a Cosmological Probe?

The hope is to use X-ray variability as a luminosity/distance indicator

Were Quasars More X-ray Variable in the Early Universe?

Early, tentative indications for increased X-ray variability at high redshift:

Were Quasars More X-ray Variable in the Early Universe?

Early, tentative indications for increased X-ray variability at high redshift:

Were Quasars More X-ray Variable in the Early Universe?

Early, tentative indications for increased X-ray variability at high redshift:

Perplexing result, leading to conflicting interpretations (e.g., Papadakis et al. 2008; Ponti et al. 2012; Lanzuisi et al. 2014). Mainly because:

- ★ distant AGN are more luminous (and thus have larger central engines) → their X-ray variations are expected to be slower and suppressed.
- * AGN X-ray spectral properties have not evolved significantly.

If real, may indicate evolution of:

- * The X-ray variability mechanism
- * The X-ray emitting region size
- * The accretion rate/mode/efficiency

Insights from X-ray Surveys

Insights from X-ray Surveys

Insights from the Deepest X-ray Survey

The Chandra Deep Field-South: 7 Ms exposure covering 17 years; ~1000 X-ray sources (Luo et al. 2017).

Insights from the Deepest X-ray Survey

- 1. Flux-limited survey: low-*L* (low-*L*/*L*_{Edd}) sources underrepresented at high redshift.
- 2. Fixed temporal baseline: high-redshift sources not probed sufficiently long (e.g., Papadakis et al. 2008).

Need a complementary approach to the survey strategy:

Long-term X-ray monitoring of a carefully-selected sample of luminous radio-quiet quasars (RQQs) at high redshift while breaking the strong *L-z* dependence.

Long-term X-ray monitoring of a carefully-selected sample of luminous RQQs at high redshift while breaking the strong *L-z* dependence.

X-ray light curves of RQQs at $z \sim 4.2$ (continued *Chandra* monitoring during Cycles 19 - 21)

Long-term X-ray monitoring of a carefully-selected sample of luminous RQQs at high redshift while breaking the strong *L-z* dependence.

Comparison between: entire light curves of the $z \sim 1.3 - 2.7$ sources, four-epoch light curves of the $z \sim 4.2$ sources, and the *Chandra* Deep Field-South 2 Ms exposure.

Extended the *Chandra* Deep Field-South parameter space by $\Delta z \sim 1$ and by an order of magnitude in *L*

Comparisons with the Chandra Deep Field-South 4 Ms exposure.

Comparisons with the Chandra Deep Field-South 4 Ms exposure.

X-ray variability: no evidence for evolution; complex dependence on L/L_{Edd} .

Structure function of luminous, high-redshift quasars is similar to that of nearby, steep-X-ray spectrum (also high- $L/L_{\rm Edd}$) sources. X-ray variability is stronger on longer timescales.

Results from the Chandra Deep Field-South 7 Ms Exposure

Results from the Chandra Deep Field-South 7 Ms Exposure

- * The PSDs of high-redshift AGN are similar to those of local AGN.
- * The break frequency depends on $M_{\rm BH}$ and $L/L_{\rm Edd}$, and the PSD normalization most likely depends on $L/L_{\rm Edd}$.
- * The Eddington ratio is consistent with a constant value up to $z\sim3$.

What the Future Holds for AGN X-ray Variability

(X-ray) variability of the most distant quasars: uncharted territory.

X-ray monitoring of millions of AGN up to z~6

Summary - Part I

- * AGN X-ray variability depends on the temporal baseline and on M_{BH} and L in a complicated way.
- * No evidence for evolution of X-ray variability up to $z \sim 4$.
- * Currently, no evidence for evolution in accretion rate up to $z \sim 3$.
- * Prospects for constraining evolution of accretion rate with next-generation X-ray observatories.

Part II

AGN Variability Science in the LSST Era

See also the AGN chapters in the LSST Science Book and LSST Observing Strategy White Paper:

http://www.lsst.org/sites/default/files/docs/sciencebook/SB_10.pdf

https://github.com/LSSTScienceCollaborations/ObservingStrategy/

For more information, contact: lsst-agn@lsstcorp.org

- * Magnitude range: 15.7 < i < 26.3, M_i <= -20
- *Redshift range: 0 < z < 7.5 (and beyond), using photometric redshift probability distribution functions
- *Classification and characterization based on joint likelihood distribution using:
 - 1. Colors
 - 2. Variability
 - 3. Astrometry
 - 4. Multiwavelength matching
- ★Obscuration and host-galaxy dilution will hinder AGN selection

Background: LSST image simulation spanning ~0.03 deg²

- * Magnitude range: 15.7 < i < 26.3, M_i <= -20
- *Redshift range: 0 < z < 7.5 (and beyond), using photometric redshift probability distribution functions
- *Classification and characterization based on joint likelihood distribution using:
 - 1. Colors
 - 2. Variability
 - 3. Astrometry
 - 4. Multiwavelength matching
- ★Obscuration and host-galaxy dilution will hinder AGN selection

Background: LSST image simulation spanning ~0.03 deg²

LSST Observing Strategy and the Operations Simulator

Multicolor selection: employing the six LSST bands, ugrizY

Variability: AGN have variability patterns distinct from those of variable stars

Astrometry:

- 1) Lack of proper motion (down to ~1 mas yr⁻¹ at r ~ 24)
- 2) Differential chromatic refraction (change in band λ_{eff} with z): "astrometric redshifts"

Multiwavelength matching: cross-correlating source positions with LSST data

AGN by the Numbers

Chandra Deep Field-South Number Counts

- ★ Expect ≈10⁸ AGN detected in ≈10⁴ deg² main LSST survey.
- *Additional detections of ~40000 (ultrafaint) AGN expected in ~200 deg² of Deep Drilling Fields (DDFs).
- *Expected discovery of ~8000 gravitationally lensed quasars including ~1000 systems with measurable time delays.
- *Expected discovery of at least 1000 AGN at z > 6.0 down to $L_{\rm opt} \sim 10^{44}$ erg s⁻¹.

Quasars at the End of the Dark Ages

1000 deg^2) z > 6.020000 z>7.0 100 N(<y, z > 7.520 22 24 Courtesy: X. Fan

Colors of high-redshift quasars

Expected numbers of z > 6 quasars

- 1) Between redshifts of 6.0 and 7.5: i- and z-band dropouts.
- 2) Above redshift 7.5, Y-band dropouts having multiwavelength detections.

AGN Variability Studies with LSST

Millions of AGN light curves with ~55-185 samplings per band (main survey) and ≈10³ samplings per band (DDFs) over 10 years spanning a temporal baseline of minutes-to-years.

- *Variability amplitude and timescale as a function of L, z, λ_{eff} , color, multiwavelength and spectroscopic properties (where available).
- *Photometric reverberation mapping (e.g., black-hole mass estimates).
- *Power density spectra (black-hole mass estimates, accretion flow probe).
- *Searching for binary supermassive black holes.
- *Accretion disk size and structure using gravitational microlensing.
- *Time delays in gravitationally lensed quasars (cosmology).
- *Unresolved lensed-quasar candidates (cosmology).

AGN Variability Studies with LSST

Millions of AGN light curves with ~55-185 samplings per band (main survey) and ≈10³ samplings per band (DDFs) over 10 years spanning a temporal baseline of minutes-to-years.

- *Variability amplitude and timescale as a function of L, z, λ_{eff} , color, multiwavelength and spectroscopic properties (where available).
- *Photometric reverberation mapping (e.g., black-hole mass estimates).
 - *Power density spectra (black-hole mass estimates, accretion flow probe).
 - *Searching for binary supermassive black holes.
 - *Accretion disk size and structure using gravitational microlensing.
 - *Time delays in gravitationally lensed quasars (cosmology).
 - *Unresolved lensed-quasar candidates (cosmology).

Transient AGN

Transient outbursts from galactic nuclei lasting over a month or more can occur when a star, a planet, or a gas cloud is tidally disrupted and partially accreted by the supermassive black hole.

Light curves of tidal disruption event candidates discovered in UV and optical surveys

- *LSST is expected to discover and monitor ~1000 events per year.
- *LSST can trigger prompt multiwavelength follow-up.
- *Provide tight constraints on the contribution of transient AGN to the faint end of the AGN luminosity function.
- *Frequent monitoring and large area covered by LSST may allow detection of faint and rapid outbursts associated with intermediate-mass black holes in nuclei of nearby galaxies.

Photometric Reverberation Mapping with LSST

Assuming Keplerian motion of the BLR clouds: $M_{\rm BH} \propto R_{\rm BLR} V^2$

From photoionization: $R_{\rm BLR} \propto L^{0.5}$

Single-epoch BH mass estimate: $M_{\rm BH} \propto L^{0.5} \, \rm FWHM (BLR \, line)^2$

Photometric reverberation mapping: estimating $R_{\rm BLR}$ and $M_{\rm BH}$ in ~10⁵ quasars

Summary - Part II

*First light coming soon - stay tuned!