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Part I

AGN Variability
iIn X-ray Surveys



Why X-ray?

X-ray variations are typically faster and stronger relative to those in the optical.
X-ray monitoring: more efficient for studying continuum variations in distant AGN.

X-ray variability depends on L and MgH in a complicated way.

Vbreak

Broken (or bending) power-law model for the power spectral density (PSD) of
AGN X-ray variability; analogous to X-ray binaries (e.g., Markowitz et al. 2003;
Done & Gierlinski 2005; McHardy 2006). The PSD normalization may depend on
L/Leqd (€.9., Ponti et al. 2012).

What we measure is the Excess Variance
(e.g., Nandra et al. 1997; Turner et al. 1999):
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Why X-ray?

X-ray variability depends on L and MgH in a complicated way.
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X-ray Variability Dependence on L, MgH
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Luminous AGN show milder and
slower X-ray variations with respect
to lower luminosity sources. Primary
driver could be MgH.
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X-ray Variability as a Cosmological Probe?
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The hope is to use X-ray variability as a luminosity/distance indicator
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X-ray Variability as a Cosmological Probe?

Athena, 10 Ms, 250 deg®
250 2560 35

La Franca et al. (2014)

The hope is to use X-ray variability as a luminosity/distance indicator
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Were Quasars More X-ray Variable in the Early Universe?

Early, tentative indications for increased X-ray variability at high redshift:
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Almaini et al. (2000)
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Were Quasars More X-ray Variable in the Early Universe?

Early, tentative indications for increased X-ray variability at high redshift:

Manners et al. (2002)
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Were Quasars More X-ray Variable in the Early Universe?

Early, tentative indications for increased X-ray variability at high redshift:

Perplexing result, leading to conflicting
interpretations (e.g., Papadakis et al.
2008; Ponti et al. 2012; Lanzuisi et al.
2014). Mainly because:

X distant AGN are more luminous
(and thus have larger central
engines) — their X-ray variations
are expected to be slower and
suppressed.

[0}
O
c
)
-
O
>
9]
0
O
O
x
L

. Lum|n08|ty(1O42 erg/s)[0.5-7 keV] * AGN X_ray SpeCtraI prOpertleS have
reoltlo et el (2004 not evolved significantly.

If real, may indicate evolution of:
X The X-ray variability mechanism
X The X-ray emitting region size
X The accretion rate/mode/efficiency
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Insights from X-ray Surveys
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Insights from the Deepest X-ray Survey

Courtesy: M. Paolillo
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o

The Chandra Deep Field-South: 7 Ms exposure covering
17 years; ~1000 X-ray sources (Luo et al. 2017).

Unveiling the Physics Behind Extreme AGN Variability, St. Thomas, USVI, July 14, 2017



Insights from the Deepest X-ray Survey

Source 691; Tot cnts: 3272

Paolillo et al. (2017, accepted for MNRAS last Tuesday)

0 20 40 220 235 420 435 2910 2940 3820
Doys Doys Doys Doys

1. Flux-limited survey: low-L (low-L/Le4q) SOUrCES
underrepresented at high redshift.

2. Fixed temporal baseline: high-redshift sources not
probed sufficiently long (e.g., Papadakis et al. 2008).
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X-ray Monitoring of Luminous Distant Quasars

Need a complementary approach to the survey strategy:

Long-term X-ray monitoring of a carefully-selected sample
of luminous radio-quiet quasars (RQQs) at high redshift
while breaking the strong L-z dependence.

Four RQQs atz~ 4.2 Three RQQs atz~1.3-2.7

Unveiling the Physics Behind Extreme AGN Variability, St. Thomas, USVI, July 14, 2017



X-ray Monitoring of Luminous Distant Quasars

Long-term X-ray monitoring of a carefully-selected sample of luminous RQQs
at high redshift while breaking the strong L-z dependence.

Q 0000-263 z=4.10
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Shemmer et al. (2017) Rest-Frame Days Since First Epoch

X-ray light curves of RQQs at z ~ 4.2
(continued Chandra monitoring during Cycles 19 - 21)
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X-ray Monitoring of Luminous Distant Quasars

Long-term X-ray monitoring of a carefully-selected sample of luminous RQQs
at high redshift while breaking the strong L-z dependence.

CDF-S 2Ms z< 0.5
CDF-S2Ms 0.5<z< 1

Comparison between: entire
light curves of the z~ 1.3 - 2.7
sources, four-epoch light
curves of the z ~ 4.2 sources,
and the Chandra Deep Field-
South 2 Ms exposure.

10% erg s

Shemmer et al. (2014) L().S S keV [

Extended the Chandra Deep Field-South parameter space by
Az ~ 1 and by an order of magnitude in L
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X-ray Monitoring of Luminous Distant Quasars

Comparisons with the Chandra Deep Field-South 4 Ms exposure.
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All epochs ‘ Chandra epochs
(six epochs) (four - five epochs)

@ CDF-S 4Ms sources 0.35 <7< 3.99
B Swift sources 1.33 <7< 2.74
Chandra sources 4.10 < z < 4.35

42 -l Sh t al. (2017 42 1
L, , .10 ergs ] emmer et al. (2017) 5 ey 10 ergs ]
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X-ray Monitoring of Luminous Distant Quasars

Comparisons with the Chandra Deep Field-South 4 Ms exposure.

@ CDF-S 4Ms sources 0.35 < 7 < 1.03
CDF-S 4Ms sources 1.03 < z< 1.95
CDF-S 4Ms sources 1.95 < z<2.80
CDF-S 4Ms sources 2.80 < z< 3.99
Swift sources 1.33 <7< 2.74

Chandra sources 4.10 < 7 < 4.35

10°

42 -1
Shemmer et al. (2017) L2 -7 keV [10 Crg S ]

X-ray variability: no evidence for evolution; complex dependence on L/Lgdq.
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X-ray Monitoring of Luminous Distant Quasars

Variability Structure Function: Steep X-ray Spectrum Quasars
z~0.1 (Fiore et al. 1998)

Amj; = [2.51og [£(t;)/f ()] Flat Xray Speetrum Quasars
Swift sources

1.33 <2< 2.74 (Shemmer et al. 2014)

Chandra sources
4.10 < z < 4.35 (This Work)

o

e

Shemmer et al. (2017)

Structure function of luminous, high-redshift quasars is similar to
that of nearby, steep-X-ray spectrum (also high-L/Ledd) SOUrces.
X-ray variabllity is stronger on longer timescales.
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Results from the Chandra Deep Field-South 7 Ms Exposure

S/N per bin >1.5
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Results from the Chandra Deep Field-South 7 Ms Exposure

(Eddinton units)
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S/N per bin >0.8

Paolillo et al. (2017)

X The PSDs of high-redshift AGN are similar
to those of local AGN.

X The break frequency depends on Mgn and
L/Leqq, and the PSD normalization most
likely depends on L/Leqa.

Excess variance (over 17 year)

X The Eddington ratio is consistent with a
constant value up to z~3. oF i 80<eca.75

1.03<z<1.80
0.40<z<1.03

10 100
Luminosity (10*? erg/s)

Mode‘ 2 local AGNS O MOde‘ 3 Mc)de‘ 4 local AGNS O
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Unveiling the Physics Behind Extreme AGN Variability, St. Thomas, USVI, July 14, 2017



What the Future Holds for AGN X-ray Variability

(X-ray) variability of the most distant quasars: uncharted territory.

eROSITA

g \ .,N;',-_ .

OBSERVATORY "8

X-ray monitoring of millions of AGN up to z~6
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Summary - Part I

X AGN X-ray variability depends on the temporal
baseline and on Mgx and L in a complicated way.

X No evidence for evolution of X-ray variability up to
Z~4.

% Currently, no evidence for evolution in accretion
rate up to z ~ 3.

X Prospects for constraining evolution of accretion
rate with next-generation X-ray observatories.
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Part IT

AGN Variability Science
in the LSST Era

See also the AGN chapters in the LSST Science Book and LSST Observing Strategy White Paper:
http://lwww.Isst.org/sites/default/files/docs/sciencebook/SB_10.pdf

https://github.com/LSSTScienceCollaborations/ObservingStrateqy/

For more information, contact: Isst-agn@Isstcorp.or
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LSST Observing Strategy and the Operations Simulator
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AGN Selection by LSST

Multicolor selection: employing the six LSST bands, ugrizY

012345
Redshift, z

=02

LSST Science Book
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AGN Selection by LSST

Variability: AGN have variability patterns distinct from those of variable stars

17588 Sources
5819 Known QSOs
1325 Known Stars
123 z>3 QSO0s
180 z<0.5 QSOs
RR Lyrae Stars
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AGN Selection by LSST

Astrometry:
1) Lack of proper motion (down to ~1 mas yr' at r ~ 24)

2) Differential chromatic refraction (change in band Aeff with z): “astrometric redshifts”

Kaczmarczik et al. 2009
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AGN Selection by LSST

Multiwavelength matching: cross-correlating source positions with LSST data

Eudlid" .- /
ALMA

N

Unveiling the Physics Behind Extreme AGN Variability, St. Thomas, USVI, July 14, 2017



AGN by the Numbers

0.5-2 keV
— e Total 4 Ms CDF-S * EXpeCt ~1 08 AGN detected in

— = A AGNs _ 2 .
S-S ~10% deg® main LSST survey.
Lehmer et al. (2012)

My 14900 deg ? X Additional detections of ~40000

iy (ultrafaint) AGN expected in ~200
deg? of Deep Drilling Fields
(DDFs).

X Expected discovery of ~8000
gravitationally lensed quasars
iIncluding ~1000 systems with
measurable time delays.

X Expected discovery of at least
1000 AGN at z > 6.0 down to
Lopt ~10%* erg s,
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Chandra Deep Field-South Number Counts
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Quasars at the End of the Dark Ages

Many L, T, Y dwarfs
can be removed via
proper motion and
variability

R 6.5 T dwarfs

N(<y, 20000 deg?)

L dwarfs \

single epoch
final survey

—

20
Courtesy: X. Fan

24

Colors of high-redshift quasars Expected numbers of z > 6 quasars

1) Between redshifts of 6.0 and 7.5: i- and z-band dropouts.

2) Above redshift 7.5, Y-band dropouts having multiwavelength detections.
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AGN Variability Studies with LSST

Millions of AGN light curves with ~55-185 samplings per band
(main survey) and =10° samplings per band (DDFs) over 10
years spanning a temporal baseline of minutes-to-years.

X Variability amplitude and timescale as a function of L, z, Aef, color,
multiwavelength and spectroscopic properties (where available).

X Photometric reverberation mapping (e.g., black-hole mass estimates).
X Power density spectra (black-hole mass estimates, accretion flow probe).
X Searching for binary supermassive black holes.

X Accretion disk size and structure using gravitational microlensing.
XTime delays in gravitationally lensed quasars (cosmology).

XUnresolved lensed-quasar candidates (cosmology).
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Transient AGN

Transient outbursts from galactic nuclei lasting over a |
month or more can occur when a star, a planet, oragas a |
cloud is tidally disrupted and partially accreted by the . = |
supermassive black hole. TG

XLSST is expected to discover and monitor
~1000 events per year.

XLSST can trigger prompt multiwavelength
follow-up.

X Provide tight constraints on the contribution
of transient AGN to the faint end of the AGN
luminosity function.
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XFrequent monitoring and large area

covered by LSST may allow detection of
R falnt and.rapld outbursts assocngted Wlt_h
e O N I O intermediate-mass black holes in nuclei of
UV and optical surveys nearby galaxies.

0 50 100 150
Gezari (2012) Days Since Peak
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Photometric Reverberation Mapping with LSST

Assuming Keplerian motion of the BLR clouds: Men = RpeLrV? \%

&
From photoionization: Reir « L°° \
. RBLR
continuum

Single-epoch BH mass estimate: Mgn < L%> FWHM(BLR line)? 7"~

iron

+Balmer cont. Chelouche, Shemmer, et a. (2014)

Arbitrary units
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Days

Photometric reverberation mapping: estimating Re.r and Mg in ~10° quasars
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Summary - Part II

X First light coming soon - stay tuned!
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