A Theoretical Study on the Geometry of Accretion Flow in AGN

Bifang Liu
National Astronomical Observatories, China

In collaboration with Ronald E. Taam, Erlin Qiao and Weimin Yuan

In the center: Geometry? Physics?

Coexistence of disk and corona in bright AGN

- Overall spectrum: inverse Compton scattering+ high-energy cut off
- Detection of Compton reflection hump in many sources

Reverberation time lag

Is the accretion flow the same as that in BHXRBs?

Accretion flows in BHXRBs

Corona forms through thermal instability on the disk surface or in the same way as solar corona

Spectral state transition in BHXRBs

Meyer, Liu, Meyer-Hofmesiater 2000

Liu et al. 2012

Similar accretion flow in AGN?

The corona fed by disk evaporation too weak compared to the energetic X-rays in bright AGN!

Two possibilities to support a strong X-ray emitting corona

- ♦ Accretion energy is transported from the disk to the corona (Haardt & Maraschi 1991;1993)
 e.g. magnectic reconnection heating (Liu et al.
 - 2002;2003;2016), open questions remain
- ♦ strong hot (advection) accretion flow supply
 - → natural in AGN environment: accretion of wind/ interstellar medium, unlike RLO in BHXRBs
 - → necessary

Why hot gas supply necessary?

In the strong gravitation field, gas either accretes/falls to BH or lost in wind/outflows. For $M=10^8M_{\odot}$, $R=10R_s$

- Timescale for hot gas to accrete to the BH $t_{acc}^{\sim}(1/\alpha\Omega)(R/H)^{2\sim}\,(1/\alpha\Omega)^{\sim}5days$
- Timescale for hot gas to fall free to the BH $t_{\text{fall}} \sim (1/\Omega) \sim 12 \text{hrs}$

Hot gas cannot exist long near the black hole, while X-ray emission in AGN lasts much longer

Only hot gas is not enough! Continuous hot gas "fill in" is necessary

Coupled disk and corona in AGN

Liu et al. ApJ 806:223,2015

- Mass supply for the accretion in AGN is stellar wind or interstellar medium
- ◆ Diverse distributed gas → not necessary to form a thin disk, but easy to form a hot flow in outer region
- Disk and corona are coupled through radiation and gas
- Coronal gas condenses to the inner disk, supporting a thin accretion disk

Accretion rate distribution in corona and disk

Re-distribution of the accretion rate in the disk and corona: higher gas supply rate, larger disk, higher accretion rate in the disk

Is this extended corona consistent with reverberation analyses?

Contradictory to reverberation lag?

- Reverberation time lags demand that hard X-ray emission in black hole systems be centrally concentrated, with height H≤10 Rg (e.g. Fabian 2009)
- Micro-lensing measurements show half-light radius ≤20 Rg (e.g. Chartas et al. 2009)

Dominant X-ray emission region:

Bulk hard X-ray emission is concentrated within R<10Rs

→ consistent with reverberation time lag and micro-lensing measurement

The higher Eddington ratio, the larger the bulk emission region

consistent with large sample results (e.g. Kara et

The compactness parameter $l = \frac{L}{R} \frac{\sigma_{\rm T}}{m_{\rm o}c^3}$

marginally below the critical value for pair production, indicating pair production is not the dominant process

→ IC spectrum is not affected by pair production

→ Self-consistent model

Correlation between the hard X-ray photon index and reflection scaling factor (Qiao &Liu 2017)

The spectral state transition in AGN

Summary

- ◆The accretion flow in AGN differs from that in BHXRBs due to different environment (gas supply to accretion)
- ♦ A well-coupled thin accretion disk + hot accretion corona can interpret both of the spectra and reverberation lag for most bright AGN

Discussion: Alternative scenario?

Vertically collimated corona/ejecta/outflows

no/weak reflection, if vertically extended
 Not the observational case

- pair production dominates, if compact (e.g. jet base)

unclear, non-IC spectrum large background γ-rays

