RADIO OBSERVATIONS OF TDES: STATUS AND PROSPECTS

Kate D. Alexander Unveiling the Physics Behind Extreme AGN Variability July 14, 2017

Part I: Current Status

Open Science Questions

- What process(es) produce radio emission in TDEs?
- How do relativistic jets form? What conditions are required?
- What do the environments around (recently) quiescent supermassive black holes look like?
- How can we optimize follow-up observations to maximize scientific return?

Current Radio TDE Sample

Synchrotron Model

- Fit each SED separately (no dynamical assumptions)
- SEDs transition from $v^{5/2}$ to v^{-1} at $(v_p, F_{v,p})$

Synchrotron Model

- Fit each SED separately (no dynamical assumptions)
- SEDs transition from $v^{5/2}$ to v^{-1} at $(v_p, F_{v,p})$

Energy Equipartition

$$\begin{aligned} R_{\rm eq} &= (3.4 \times 10^{15} \,{\rm cm}) \, F_{\nu,p,mJy}^{\frac{9}{19}} \, d_{L,26}^{\frac{18}{19}} \, \nu_{p,10}^{-1} (1+z)^{-\frac{10}{19}} f_A^{-\frac{8}{19}} f_V^{-\frac{1}{19}} \\ E_{\rm eq} &= (4.3 \times 10^{46} \,{\rm erg}) \, F_{\nu,p,mJy}^{\frac{23}{19}} \, d_{L,26}^{\frac{46}{19}} \, \nu_{p,10}^{-1} (1+z)^{-\frac{42}{19}} f_A^{-\frac{12}{19}} f_V^{\frac{8}{19}} \\ \text{and other quantities } (N_{\rho}, B, \text{etc.}) \end{aligned}$$

Case Study I: Sw J1644+57

- Radio localization to the core of a *z* = 0.354 galaxy
- On-axis relativistic jet
- Circumnuclear density
 - Better spatial resolution than Galactic center observations!
- An unusually energetic event (E ~ 10⁵² erg)
 - similar jets ruled out for bulk of TDEs by radio detections/limits

Case Study II: ASASSN-14li

- The emission is best modeled as the sum of a steady source with F αv^{-1} (dashed line) and a transient component (right panel)
- Steady component is consistent with archival 1.4 GHz detections.

A Non-Relativistic Outflow

Fitting each SED independently, we find:

- The emitting region is expanding at a constant velocity of ≈12,000 – 36,000 km s⁻¹
- The outflow energy is roughly constant in time, E ≈ (4-10) × 10⁴⁷ erg
- See also: van Velzen poster

Alexander et al. (2016)

Case Study III: XMMSL1 J0740-85

- Nearby TDE discovered in the XMM-Newton Slew Survey
 - X-ray emission shows both thermal and nonthermal components
 - Peak accretion rate is sub-Eddington
- Fading radio emission detected 19-28 months after discovery
 - Either a weak decelerated
 relativistic jet or a non-relativistic
 outflow match the observations
 - Earlier radio observations needed to break modeling degeneracies

TDE Populations: Energetics

Circumnuclear Density Profiles

Expanding the Radio TDE Sample

Alexander et al. (2017)

Expanding the Radio TDE Sample

Alexander et al. (2017)

Extreme Coronal Line Emitters

- Evidence of highly ionizing radiation
- Lines faded over 5-10 yr in 4 of 7 SDSS **ECLE** galaxies selected by Wang et al. (2012)

Mid-IR Echos in WISE data

SDSS J0952+2143: Optical Flare

Palaversa et al. (2016)

- LINEAR optical survey serendipitously detected an optical flare ~1.6 yr before SDSS spectrum
- 10 year light curve shows optical variability of $\sigma < 0.08$ mag outside of flare interval

Radio Observations

Initial Detections at 5.0 and 7.1 GHz (March 2016):

- All 7 Wang et al.
 sources detected (flux densities 0.03 1.2 mJy)
- Steep spectral indices
 (α = -0.6 -1.6)
- X-ray coverage is poor, but L_R/L_X similar to radioquiet AGN

Radio Observations

- Four brightest sources reobserved (June 2017)
- SDSS J0748 fades faster than expected for a TDE (F_v α t^{-7±3}), others also fade.
- SDSS J0938: 1.4 GHz (A)
 flux density is comparable to 1999 FIRST detection
- SDSS J1241: factor of 5 brighter than FIRST upper limit

Alexander et al. (in prep)

TDEs? AGN flares?

- Strong coronal line emission is NOT a simple TDE diagnostic in isolation
 - ECLE galaxies with fading coronal lines may have hosted TDEs, but some are likely AGN
 - Has this level of coronal line variability been seen in AGN before?
- Radio observations should be part of a multiwavelength follow-up strategy
 - Early follow-up key for constraining emission models
 - In our ECLE sample, any TDE-caused radio emission is less energetic than Sw J1644+57 jet

Part II: The Survey Era

Radio Interferometers

- VLA, ATCA, ALMA, LOFAR, MWA, ASKAP, MeerKAT, etc.
- To date: surveying large areas of the sky at high sensitivity and resolution is difficult, very time consuming
- Future: era of all-sky radio surveys, real-time transient searches (SKA, others)
- A better understanding of known radio transient populations will inform survey strategies

Looking Forward: VLA Sky Survey

- All sky coverage north of declination -40°
 - 5520 hr over ~7 yr (6 configuration cycles)
 - 3 epochs separated by 32 months
- Single frequency band (2-4 GHz), full polarization
- 2.5 arcsec resolution
- Survey rms ~69 μJy/beam
 - 9.7 million extragalactic source detections predicted
- Pilot survey completed last year; first epoch on schedule to begin fall 2017

VLASS for transient discovery

- TDE radio emission evolves slowly at 3 GHz
 - New TDEs in survey data may be difficult to distinguish from other transients
 - In most cases, sources will be identified too late for rapid early follow-up
- Final source catalogs will be valuable reference to interpret future TDE candidates

Upcoming Surveys: Long Term

- Square Kilometer Array
 - TDE discovery rate poised to increase by orders of magnitude
 - ThunderKAT: SKA precursor radio transients survey
- How do we identify the most promising candidates for follow-up?
 - Large radio flares in galaxy centers with durations of months – years
 - Multiwavelength approach

Conclusions

- Progress on TDE open science questions:
 - What process(es) produce radio emission in TDEs?
 - Relativistic jets (sometimes), non-relativistic winds
 - What conditions are required to form relativistic jets?
 - Highly super-Eddington accretion seen in extreme relativistic events (Sw J1644+57)
 - What do the environments around (recently) quiescent supermassive black holes look like?
 - Steep r^{-2.5} profile in "gold standard" TDE ASASSN-14li
- This is an exciting time for radio transient science!
 - Ongoing surveys will soon provide deep radio sky maps
 - Planned surveys will discover new transients in real-time, complementing follow-up of TDEs and AGN outbursts at other wavelengths.