X-rays from AGN in a multi-wavelength context

Chris Done, University of Durham
Martin Ward, Chichuan Jin, Kouchi Hagino
Plan!

What can we learn about AGN variability from BHB?

What can we learn about tidal disruptions from AGN
Ultimately from accretion flow

- Differential Keplerian rotation
- MRI Viscosity: gravity → heat
- Thermal emission:
- \(dL = dA \sigma T^4 \)
- 10 Msun, \(L = LEdd \)
 \(T_{\text{max}} \approx 1 \text{ keV} \)
Observed disc spectra in BHB!!

- Fit Shakura-Sunyaev disc (with GR and photosphere)
- WORKS WELL!!
- Small corona gives high energy tail

Kolehmainen et al 2010
Observed disc spectra in BHB!!

- Fit Shakura-Sunyaev disc (with GR and photosphere)
- WORKS WELL!!
- Small corona gives high energy tail

Kolehmainen et al 2010

![Graph showing observed disc spectra in BHB with fit to Shakura-Sunyaev disc (with GR and photosphere). The graph indicates that small corona gives high energy tail.](image)
Two types of spectra in stellar BH

Disk dominated

Comptonised spectrum

Gierlinski et al. 1999
Theory of accretion flows

Discs – geometrically thin, cool, optically thick SS73
Plus X-ray tail/corona

‘ADAF’– geometrically thick, hot, optically thin
Only low L/Ledd
Narayan & Yi 1995
Theory of accretion flows

- Low/hard state BHB
- Optically thin (tau~1-2)
- We see the MRI directly!
- X-ray variability
- And jet!! $L_R \sim L_x$
- (Fender et al 2004)
- BUT NOT HIGHLY RELATIVISTIC $\Gamma \sim 1.5-2$
- NOT 10-20 as in Blazars

‘ADAF’– geometrically thick, hot, optically thin
Only low L/Ledd
Conclusions part 1 - BHB

- Disc dominated state – Shakura-Sunyaev disc equations!!
- TRANSITIONS – composite
- Truncated outer disc, inner hot thin flow
- ADAF - X-ray hot flow
- steady compact jet (bulk $\Gamma \sim 1.5-2$)
BHB: template for SED L/L_{edd}?
Scaling black hole accretion flow

- Scale up to AGN
- Bigger mass!
- Disc temp lower – peaks in UV (more power, but more area!)
- ATOMIC PHYSICS
- Larger RANGE in mass – from 10^5-1010M
- And maybe bigger range in spin??
BHB: template for SED L/Ledd?

- Dramatic changes in continuum – single object, different days
- Underlying pattern in all systems
- High L/L_{edd}: soft spectrum, peaks at kT_{max} often disc-like, plus tail
- Lower L/L_{edd}: hard spectrum, peaks at high energies, not like a disc (McClintock & Remillard 2006)

Gierlinski & Done 2003
‘Spectral states in AGN’

Disc BELOW X-ray bandpass. Peaks in UV – ATOMIC PHYSICS

XMM-Newton & SWIFT gives us simultaneous OM data! Perfect
Interstellar absorption

Disc BELOW X-ray bandpass. Peaks in UV – ATOMIC PHYSICS

XMM-Newton & SWIFT gives us simultaneous OM data ! Perfect
Scaling relations for M_{BH} in terms of Hβ FWHM and F_{opt}

Based on BLR reverberation campaigns
Full multi-wavelength spectrum

- De-absorb from galactic and intrinsic
- Model across unobservable 0.01-0.2 keV bandpass
- Lbol - know M so know LEdd so get Lbol/LEdd

- Mkn509
- 10^8Msun
- 0.1LEdd
- Not disc!
- Soft X-ray XS
Full multi-wavelength spectrum

- De-absorb from galactic and intrinsic
- Model across unobservable 0.0136-0.2 keV bandpass
- L_{bol} - know M so know $LEdd$ so get $L_{\text{bol}}/LEdd$

- Mkn509
- 10^8Msun
- 0.1$LEdd$
- Not disc!
- Soft X-ray XS

Medhipour et al 2011
Nature of soft excess region?

- Why??
- UV bright region of disc
- Failed wind??
Optxagnf: conserving energy

- Outer standard disc – gives M_{dot} - to R_{corona}
- Then luminosity not completely thermalised to make soft X-ray excess?
- But M_{dot} same at all radii - Novikov Thorne $L(r) \propto M \frac{M_{\text{dot}}}{R^3}$
- $L_{\text{bol}} = \eta M_{\text{dot}} c^2$
- Inner corona as in hard state BHB (L/L_{Edd}?)

Done et al 2012
Typical AGN SED

- Most standard BLS1/QSO $<M> \approx 10^8$, $<L/LEdd> \approx 0.1$
- Outer disc, strong UV peak from soft X-ray excess
- Hard X-ray tail – suppresses powerful UV line driving

Jin et al 2012
Very different to NLS1

- $\langle M \rangle \sim 10^7$, $\langle L/LEdd \rangle \sim 1$ NLS1 in local universe
- Disc dominated, small SX, weak X-rays

Jin et al 2012
Models conserving energy!!

- Smaller R_{corona}
- Softer 2-10 keV corona
- Spectra are more disc dominated!
- Weak soft X-ray excess and weak corona
- X-ray bolometric correction CHANGES!!
- Vasudevan & Fabian 2007; 2009

Done et al 2012
Models conserving energy!!

- Outer standard disc down to R_{corona}
- Then luminosity not completely thermalised to make soft X-ray excess?
- Failed UV line driven wind? And/or H ionisation instability
- Inner corona as in hard state BHB ($L/LEdd$?)
- X-rays can affect optical more!!
AGN spectral states

\[4 - A \log(\langle \lambda_{Edd} \rangle) = -0.03 \pm 0.06 \]

\[\kappa_{2-10} = 75 \]
\[\alpha_{ox} = 1.39 \]
\[\Gamma_{2-10} = 2.03 \]

\[\langle M_{BH} \rangle = 7.73 \]
\[\langle H_\beta \ FWHM \rangle = 2670 \]
AGN spectral states

$4 - B \cdot \log(\langle \lambda_{\text{Edd}} \rangle) = -0.55 \pm 0.03$

$\langle \kappa_{2-10} \rangle = 28$

$\langle \alpha_{\text{ox}} \rangle = 1.32$

$\langle \Gamma_{2-10} \rangle = 1.87$

0.009 keV

2500 Å

2 keV

$\langle M_{\text{BH}} \rangle = 7.97$

$\langle H\beta \text{ FWHM} \rangle = 5670$

Jin, Ward, Done 2012
AGN spectral states

$4-C. \log(<\lambda_{Edd}>) = -1.15 \pm 0.08$

$<\kappa_{2-10}> = 24$

$<\alpha_{ox}> = 1.31$

$<\Gamma_{2-10}> = 1.86$

0.005 keV

2500 Å

$<M_{BH}> = 8.02$

$<\text{FWHM}_{H\alpha}> = 5060$

2 keV

Jin, Ward, Done 2012
X-ray/Lopt BIGGER small L/LEdd

$A \cdot \log(\langle \lambda_{Edd} \rangle) = -0.03 \pm 0.06$

$\langle \kappa_{2-10} \rangle = 75$
$\langle \alpha_{ox} \rangle = 1.39$
$\langle \Gamma_{2-10} \rangle = 2.03$

$\langle M_{BH} \rangle = 7.73$
$\langle H\beta \ FWHM \rangle = 2670$

Jin, Ward, Done 2012
Lx/Lopt big at low L/LEdd – more reprocessed (fast) optical variability

Jin, Ward, Done 2012

MacLeod et al 2010
Optical variability campaigns biased to low L/Ledd AGN

- Low L/Ledd means Lx/Lopt is highest
- Larger amplitude optical variability from X-ray reprocessing
- NGC5548
- L/Ledd~0.02
- Hard X-ray survey (BAT) also biased to these objects!!
Ultimately from accretion flow

- Thermal emission:
 \[\text{d}L = \text{d}A \sigma T^4 \]
- 10 Msun, \(L = L_{\text{Edd}} \)
 \(T_{\text{max}} \sim 1 \text{ keV} \)
- \(h\nu < kT_{\text{max}} \): integrates to
 \[F_{\text{opt}} \propto (M \text{ Mdot})^{2/3} \cos i \]
- \(\text{So} < \text{Mdot} \propto F_{\text{opt}}^{3/2}/M \)
- Davis & Laor 2011
Get M and L/L_{edd} from single spectrum!!

- Scaling relations for M_{BH} in terms of Hβ FWHM and F_{opt}
- Based on BLR reverberation campaigns
- $<M_{\text{dot}}> \propto F_{opt}^{3/2}/M$
- $L_{bol}=\eta M_{\text{dot}} c^2$
- η depends on BH spin
- $L_{bol}/L_{edd} \propto L_{bol}/M$
SDSS Quasars: radio loud (R>10)

- ADAF flows RL
- Something else also
- High M are more RL
- high spin? BH-BH mergers?
- Shultze, Done et al 2017
FRI is top of ADAF branch (low/hard state BHB) but $\Gamma=15$!

Ghisellini et al. 2010
FRI/BL Lacs is top of ADAF branch (low/hard state BHB) but $\Gamma=15$ BH spin? BZ effect?

Ghisellini et al. 2010
Tidal disruption NOT like AGN

Val velzen et al 2016
Jin, Ward, Done 2012
AGN spectral states: LINERS

- Look like hot flow – truncated disc. SED has no strong UV bump from inner disc (Elvis et al QSO SED)
- And does have stronger radio (NOT bulk 10-15 jet)
Conclusions

• LINERs look like low/hard ADAF state
• Standard AGN/QSO all either high state or transition but don’t look exactly same as BHB – atomic physics?
• USE optical spectra to get BOTH M and L/LEdd from outer disc models NOT from bolometric correction!
• RL correlates with L/Leedd in BHB and AGN – ADAFs are more RL than discs… but also something different, most massive AGN have ‘proper’ jets – BH spin??
• Tidal disruptions DO NOT LOOK LIKE AGN!! No hard X-rays yet L/LEdd~0.1
SuperEddington flows!

- $\dot{M} = 12 \dot{M}_{\text{Edd}}$
- $L_{\text{obs}} = 4.6L_{\text{Edd}}$ wind and/or advection
- No absorption features—face on ??

Jin et al 2017
More ionising luminosity for same Mdot

Shultze, Done et al. 2017
Compare $L \text{[OIII]}$ RL and RQ for same BH M and M_{dot}!!

- 7000 SDSS QSO with Hb mass. Get M_{dot}
- Radio from FIRST $R= f_{5\text{GHz}}/f_{\text{opt}}>10$
- stack RL and RQ in each bin
- Measure OIII for RL/RQ
- All bins are RED More OIII in RL than RQ

Shultze, Done et al 2017
Compare L $[\text{OIII}]$ RL and RQ for same BH M and Mdot!!

- Highly significant - Reject same distribution at 10^{-19}
- not kinematically disturbed component as OIII profile same
- Spin paradigm for highly relativistic jets!!??

Shultze, Done et al 2017
Extreme NLS1 RX0439

- Mdot=12MdotEdd
- Lobs=4.6LEdd wind and/or advection
- No absorption features—face on ??

Jin et al 2017
Source and disc geometry
X-ray illumination - appalling

Use observed X-rays, irradiate the disc to make UVW1 FAR too much fast UVW1 variability
70 Rg is 3 hours. UVW1 timescale 15-20 days

Model UVW1 looks like X-rays! Data does NOT!!!
Source and disc geometry
UV illumination - Fantastic!!
Errr.......not so fantastic!
1H0707-495 Extreme NLS1

- 1H0707
- 2-4x10^6
- $L/L_{edd} = 11, 40, 70$ (60 degrees)
- superEddington

Done & Jin 2016
1H0707-495 Extreme NLS1

- 1H0707
- 2-4x10^6
- L/Ledd = 11, 40 70
 \[a = 0, 0.9, 0.998 \]
 60 degrees 4x10^6
- superEddington
- Strong wind, losing energy so not all potential power radiated

Done & Jin 2016
Extreme NLS1 – simple / complex

- RXJ 0439 ‘simple’ NLS1
- 1H0707 ‘complex’ NLS1 so see wind absorption - UFO?

Done & Jin 2016

Jin et al 2017
PDS456: UFO wind is clumpy

- High ionisation lines AND low energy absorption

Done & Jin 2016

Reeves et al 2009
Hagino et al 2015
Matzeu et al 2016
Complex NLS1 – X-ray view

- ‘Complex’ NLS1 (Gallo 2006) eg 1H0707-495
- Deep dips – hard spectra, large Fe features
- Extreme spin!!
Complex NLS1 – X-ray view

- Extreme spin with reflection from flat disc
- Or superEddington wind absorption with no constraints on spin!!

Hagino et al. 2016
Conclusions – most powerful winds

• Quantitative AGN feedback
• SED – L/LEdd and M
• high M, L~LEdd UV bright, X-ray weak, UV driving
• Eddington wind L>LEdd
• Both at z~2-3 QSO epoch
• Clumpy, complex - los
IRAS13224

- IRAS13224 Parker et al 2017
- Called ‘twin’ of 1H0707 (Ponti et al 2009) – probably similarly superEddington (Leighly 2004)
More ionising luminosity for same Mdot

Shultze, Done et al 2017
Compare L [OIII] RL and RQ for same BH M and Mdot!!

- 7000 SDSS QSO with Hb mass. Get Mdot
- Radio from FIRST R = $f_{5\text{GHz}}/f_{\text{opt}}>10$
- stack RL and RQ in each bin
- Measure OIII for RL/RQ
- All bins are RED More OIII in RL than RQ

Shultze, Done et al 2017
Compare L [OIII] RL and RQ for same BH M and Mdot!!

- Highly significant - Reject same distribution at 10^{-19}
- not kinematically disturbed component as OIII profile same
- Spin paradigm for highly relativistic jets!!??

Shultze, Done et al 2017
An additional component?

Boissay et al 2014
Reflected/smeared hard X-rays?

Fabian et al 2004
Crummy et al 2006

Boissay et al 2014
Reflected/smeared hard X-rays?

Boissay et al 2014
An additional component?

Boissay et al 2014