X-rays from AGN in a multiwavelength context

Chris Done, University of Durham Martin Ward, Chichuan Jin, Kouchi Hagino

THE R. L

Plan!

What can we learn about AGN variability from BHB?

What can we learn about tidal disruptions from AGN

Ultimately from accretion flow

- Differential Keplerian rotation
- MRI Viscosity: gravity → heat
- Thermal emission:
- $dL = dA \sigma T^4$
- 10 Msun, L=LEdd Tmax~1 keV

Observed disc spectra in BHB!!

- Fit Shakura-Sunyaev disc (with GR and photosphere)
- WORKS WELL!!
- Small corona gives high energy tail

Kolehmainen et al 2010

Observed disc spectra in BHB!!

- Fit Shakura-Sunyaev disc (with GR and photosphere)
- WORKS WELL!!
- Small corona gives high energy tail

Kolehmainen et al 2010

Two types of spectra in stellar BH

Gierlinski et al 1999

Theory of accretion flows

IR opt UV X-ray

Discs – geometrically thin, cool, optically thick SS73 Plus X-ray tail/corona

'ADAF'- geometrically thick, hot, optically thin Only low L/Ledd Narayan & Yi 1995

Theory of accretion flows

- Low/hard state BHB
- Optically thin (tau~1-2)
- We see the MRI directly!
- X-ray variability
- And jet!! $L_R Lx$
- (Fender et al 2004)
- BUT NOT HIGHLY RELATIVISTIC Γ~1.5-2 NOT 10-20 as in Blazars

IR opt UV X-ray

'ADAF'– geometrically thick, hot, optically thin Only low L/Ledd

 $Log \nu$

Conclusions part 1 - BHB

- Disc dominated state Shakura-Sunyaev disc equations!!
- TRANSITIONS composite
- Truncated outer disc, inner hot thin flow
- ADAF X-ray hot flow
- steady compact jet (bulk Γ~1.5-2)

BHB: template for SED L/Ledd?

Gierlinski & Done 2003

Scaling black hole accretion flow

- Scale up to AGN
- Bigger mass!
- Disc temp lower peaks in UV (more power, but more area!)
- ATOMIC PHYSICS
- Larger RANGE in mass -from 10⁵-10¹⁰M
- And maybe bigger range in spin??

BHB: template for SED L/Ledd?

Gierlinski & Done 2003

'Spectral states in AGN'

Disc BELOW X-ray bandpass. Peaks in UV – ATOMIC PHYSICS

XMM-Newton & SWIFT gives us simultaneous OM data ! Perfect

Interstellar absorption

Disc BELOW X-ray bandpass. Peaks in UV – ATOMIC PHYSICS

XMM-Newton & SWIFT gives us simultaneous OM data ! Perfect

AGN L/LEdd ? SMBH Mass

- Scaling relations for M_{BH} in terms of Hβ FWHM and Fopt
- Based on BLR reverberation campaigns

Full multi-wavelength spectrum

- De-absorb from galactic and intrinsic
- Model across unobservable 0.01-0.2 keV bandpass
- Lbol know M so know LEdd so get Lbol/LEdd

Full multi-wavelength spectrum

- De-absorb from galactic and intrinsic
- Model across unobservable 0.0136-0.2 keV bandpass
- Lbol know M so know LEdd so get Lbol/LEdd

Nature of soft excess region?

• Why??

Optical

DISC

- UV bright region of disc
- Failed wind??

Mehdipour et al 2015 Gardner & Done 2017

Optxagnf: conserving energy

- Outer standard disc gives Mdot - to R_{corona}
- Then luminosity not completely thermalised to make soft X-ray excess ?
- But Mdot same at all radii - Novikov Thorne L(r) α M Mdot /R³
- Lbol=η Mdot c²
- Inner corona as in hard state BHB (L/LEdd?)

Done et al 2012

Typical AGN SED

- Most standard BLS1/QSO <M>~10⁸, <L/LEdd>~0.1
- Outer disc, strong UV peak from soft X-ray excess
- hard X-ray tail supresses powerful UV line driving

Jin et al 2012

Very different to NLS1

- <M>~10⁷, <L/LEdd>~1 NLS1 in local universe
- Disc dominated, small SX, weak X-rays

Models conserving energy!!

- Smaller R_{corona}
- Softer 2-10 keV corona
- Spectra are more disc dominated!
- Weak soft X-ray excess and weak corona
- X-ray bolometric correction CHANGES!!
- Vasudevan & Fabian 2007; 2009

Done et al 2012

Models conserving energy!!

- Outer standard disc down to R_{corona}
- Then luminosity not completely thermalised to make soft X-ray excess ?
- Failed UV line driven wind? And/or H ionisation instability
- Inner corona as in hard state BHB (L/LEdd?)
- X-rays can affect optical more!!

Done et al 2012

Jin, Ward, Done 2012

Jin, Ward, Done 2012

X-ray/Lopt BIGGER small L/LEdd

Jin, Ward, Done 2012

Lx/Lopt big at low L/LEdd – more reprocessed (fast) optical variability

Jin, Ward, Done 2012

MacLeod et al 2010

Optical variability campaigns biased to low L/Ledd AGN

- Low L/Ledd means Lx/Lopt is highest
- larger amplitude optical variability from X-ray reprocessing
- NGC5548
- L/Ledd~0.02
- Hard X-ray survey (BAT) also biased to these objects!!

Ultimately from accretion flow

- Thermal emission:
- $dL = dA \sigma T^4$
- 10 Msun, L=LEdd Tmax~1 keV
- hv<kTmax: integrates to Fopt α (M Mdot)^{2/3} cos i
- So < Mdot $> \alpha$ Fopt $^{3/2}/$ M
- Davis & Laor 2011

Get M and L/Ledd from single spectrum!!!

- Scaling relations for M_{BH} in terms of H β FWHM and Fopt
- Based on BLR reverberation campaigns
- <Mdot> α Fopt ^{3/2}/ M
- Lbol= η Mdot c²
- η depends on BH spin
- Lbol/Ledd α Lbol / M

SDSS Quasars: radio loud (R>10)

- ADAF flows RL
- Something else also
- High M are more RL
- high spin?
 BH-BH
 mergers?
- Shultze, Done et al 2017

FRI is top of ADAF branch (low/hard state BHB) but $\Gamma=15!$

L/LEdd

Ghisellini et al 2010

FRI/BL Lacs is top of ADAF branch (low/hard state BHB) but Γ=15 BH spin? BZ effect?

Ghisellini et al 2010

Tidal disruption NOT like AGN

AGN spectral states: LINERS

- Look like hot flow truncated disc. SED has no strong UV bump from inner disc (Elvis et al QSO SED)
- And does have stronger radio (NOT bulk 10-15 jet)

Conclusions

- LINERs look like low/hard ADAF state
- Standard AGN/QSO all either high state or transition but don't look exactly same as BHB atomic physics?
- USE optical spectra to get BOTH M and L/LEdd from outer disc models NOT from bolometric correction!
- RL correlates with L/Ledd in BHB and AGN ADAFs are more RL than discs... but also something different, most massive AGN have 'proper' jets BH spin??
- Tidal disruptions DO NOT LOOK LIKE AGN!! No hard X-rays yet L/LEdd~0.1

SuperEddington flows!

Mdot=12MdotEdd 10µm 10Å 1um 100A • Lobs=4.6LEdd wind 104 and/or advection L1 • No absorption features-face on ?? E*F(E) (erg s⁻¹) 104 10⁴³ 0.0001 0.001 0.01 1 10 0.1 Energy (keV) Jin et al 2017

More ionising luminosity for same Mdot

Compare L [OII] RL and RQ for same BH M and Mdot!!

- 7000 SDSS QSO with Hb mass. Get Mdot
- Radio from FIRST R= $f_{5GHz}/f_{opt} > 10$
- stack RL and RQ in each bin
- Measure OIII for RL/RQ
- All bins are RED More OIII in RL than RQ

Compare L [OIII] RL and RQ for same BH M and Mdot!!

- Highly significant Reject same distribution at 10⁻¹⁹
- not kinematically disturbed component as OIII profile same
- Spin paradijm for highly relativistic jets!!??

Extreme NLS1 RX0439

- Mdot=12MdotEdd
- Lobs=4.6LEdd wind and/or advection
- No absorption features— face on ??

Jin et al 2017

Source and disc geometry

X-ray illumination - appalling

Use observed X-rays, irradiate the disc to make UVW1 FAR too much fast UVW1 variability 70 Rg is 3 hours. UVW1 timescale 15-20 days

Model UVW1 looks like X-rays! Data does NOT!!!

Source and disc geometry

UV illumination - Fantastic!!

Errr....not so fantastic!

1H0707-495 Extreme NLS1

- 1H0707
- $2-4x10^{6}$
- L/Ledd = 11, 40 70
 (60 degrees)
- superEddington

1H0707-495 Extreme NLS1

- 1H0707
- $2-4 \times 10^{6}$
- L/Ledd = 11, 40 70
 a=0 0.9 0.998
 60 degrees 4x10⁶
- superEddington
- Strong wind, losing energy so not all potential power radiated

Extreme NLS1 – simple / complex

Done & Jin 2016

PDS456: UFO wind is clumpy

• High ionisation lines AND low energy absorption

Done & Jin 2016

Complex NLS1 – X-ray view

- 'Complex' NLS1 (Gallo 2006) eg 1H0707-495
- Deep dips hard spectra, large Fe features
- Extreme spin!!

Complex NLS1 – X-ray view

- Extreme spin with reflection from flat disc
- Or superEddington wind absorption with no constraints on spin!!

Hagino et al 2016

Conclusions – most powerful winds

- Quantatative AGN feedback
- SED L/LEdd and M
- high M, L~LEdd UV bright, X-ray weak, UV driving
- Eddington wind L>LEdd
- Both at z~2-3 QSO epoch
- Clumpy, complex los

IRAS13224

- IRAS13224 Parker et al 2017
- Called 'twin' of 1H0707 (Ponti et al 2009) probably similarly superEddington (Leighly 2004)

More ionising luminosity for same Mdot

Compare L [OII] RL and RQ for same BH M and Mdot!!

- 7000 SDSS QSO with Hb mass. Get Mdot
- Radio from FIRST R= $f_{5GHz}/f_{opt} > 10$
- stack RL and RQ in each bin
- Measure OIII for RL/RQ
- All bins are RED More OIII in RL than RQ

Compare L [OIII] RL and RQ for same BH M and Mdot!!

- Highly significant Reject same distribution at 10⁻¹⁹
- not kinematically disturbed component as OIII profile same
- Spin paradijm for highly relativistic jets!!??

An additional component?

Reflected/smeared hard X-rays?

0.1 0.01 keV² (Photons cm⁻² s⁻¹ keV⁻¹) Mdot M103 10-4 10-⁶ 100 10 1 Energy (keV)

An additional component?