Spectroscopic Followup of Changing-Look Quasar Candidates

Chelsea MacLeod

Marthall

Unveiling the Physics Behind Extreme AGN Variability – 11 July 2017

In collaboration with: Paul Green (CfA), Nic Ross (ROE), David Homan (ROE), Alastair Bruce (ROE), Andy Lawrence (ROE), John Ruan (U' ' 'ssie Runnoe(UMich), Michael Eracleous (PSU), Scott 'erson (UW), Matthew Graham (Caltech)

Pan-STARRS

Changing-Look AGN ("CLAGN")

- Broad Balmer BEL (dis)appearance associated with *large* continuum change in Seyfert galaxies
- Changing-Look Quasars at Lbol > 10⁴⁴ erg s⁻¹ ("CLQs")

A Challenge To The AGN Unification Model

SDSS Repeated Imaging

 Stripe 82 (S82): ~60 epochs over 10 yr (N=9,275) (Recalibrated data: Ivezic+ 2004)

NGC: 2-3
 epochs
 (N=25,000)

Repeat spectroscopy from BOSS for 15%

MacLeod+ 2012

Pan-STARRS 3π Survey

- Whole sky north of Dec -30.
- Target was 4 exposures per filter per year, composed of two
 15 min pairs (in the same lunation for gri, several months later for zy).
- Ideally, at the end of the survey there should 12 visits per band, with a 6-dither pattern.

Single pointing point source modal depths (AB mags):

(slide from Nigel Metcalfe talk, NAM 2015)

	Band	5σ	Bright
	g	22.0	14.5
Alas II a	r	21.8	15.0
	i	21.5	15.0
	z	20.9	14.0
	У	19.7	13.0

Systematic Search for CLQs

Selection	Total #	In S82
SDSS Quasars in DR7Q	105783	9474
with BOSS spectra	25484	2304
and $ \Delta g > 1$ mag and $\sigma_g < 0.15$ mag	1011	287
and that show variable BELs	10	7

Other discoveries: LaMassa+ 2015 Ruan+ 2016 Runnoe+ 2016 Gezari+ 2016

>15% of strongly variable quasars are CLQs on restframe timescales of 8-10 yr.

Spectroscopic Followup Of CLQ Candidates

Goal: Test the CLQ fraction among highly variable QSOs.

Selection criteria:

1. In SDSS DR7Q (N=105,783), not BOSS

7

- 2. $|\Delta g| > 1$, $|\Delta r| > 0.05$, $\sigma < 0.15$ mag in SDSS / PS1 3 π ("EVQ")
- 3. z < 0.83, Radio-quiet
- 4. $|\Delta g| > 1$ from earlier spectrum

SDSS-IV Time Domain Spectroscopic Survey

Paul Green (P-I, SAO), Scott Anderson (P-I, UWa), Chelsea MacLeod (SAO), Michael Eracleous (PSU), Niel Brandt (PSU), Sean McGraw (PSU), Kate Grier (PSU), Jessie Runnoe (UMich), Eric Morganson (UIUC), John Ruan (UWa), Don Schneider (PSU), Yue Shen (UIUC), the TDSS Team, the SDSS-IV Collaboration, and the Pan-STARRS1 Science Consortium

- Unbiased spectral survey for ~200,000 celestial variables (SES; Morganson+ 2015; Ruan+ 2016)
- ★ Repeat spectra for 13K Quasars (RQS; MacLeod+ 2017)
- Repeat spectra for ~1K Hypervariable Quasars (|Δm| > 0.7 mag) using SES selection method
- ★ Repeat spectra for ~200 CLAGN Candidates on S82X (|∆g| >1 mag) using MacLeod+16 selection method

Results From WHT Follow-up (g<20.5)

• CLQ fraction is 30% of $|\Delta g| > 1.3$ mag, g < 20.5 targets

Spectroscopic Followup of CLQ Candidates, C. MacLeod

9

Results From WHT Follow-up (g<20.5)

• CLQ fraction is 30% of $|\Delta g| > 1.3$ mag, g < 20.5 targets

TDSS S82X CLAGN Target

Two CLQs from SDSS/BOSS search "turn back off"

Variable Absorption Ruled Out By X-rays

- X-ray flux changes by factor:
 - 10 in Mkn 1018 (Husemann+2016)
 - >10 in NGC 2617 (Shappee+2014)
 - 30 in HE 1136-2304 (Parker+2016)
 - 12 in SDSSJ0159 (LaMassa+2015)
 - >3 in iPTF 16bco (Gezari+ 2016)
- No evidence for obscuration

X-ray Followup Of CLQ Candidates

- Chandra ToO program (P-I: Green)
- Test obscuration hypothesis via Nh
- $\Gamma \rightarrow L/L_{Edd}$ (à la XRBs, e.g., Dong et al. 2014)

Structure Function Analysis

- ~10K SDSS S82 DR7 Quasars in DES
- 10% are extremely variable quasars (EVQ) with |∆g| > 1
- EVQs more variable on all timescales
- Enhanced excess variability on *long* timescales

Are CLQs Just The Tails?

(Which EVQs are CLQs?) Which QSOs are EVQs?

Compared to normal quasars at similar redshifts, luminosities:

- EVQs have stronger BELs
 - Not due to orientation effect or
- EVQs have lower L/L_{Edd}

Rumbaugh et al. (2017)

EVQs in SDSS/PS1: Low L/LEdd

EVQs in SDSS/PS1: Low L/LEdd

 log(L/L_{Edd}) = -1.057, Strong Fell line change Similar to TDE candidate (Blanchard+17)

T8.0

z = 0.25

Outstanding Questions

- Are all CLQs part of the low Eddington tail, or are some oneoff events with different physics, e.g., TDEs?
- Different physics operating in EVQs over longer timescales compared to normal quasars?

Summary, Conclusions, & Future

- Quasar variability can be extreme; Eddington ratio is a driving factor.
- CLQ fraction is roughly 30% among EVQs; but may be largely uncertain if recent short-term variability is unaccounted for.
- Importance of continued monitoring; ZTF, LSST!

Extra Slides

Followup Spectra of CLQ Candidates

Systematic Search for CLQs

- $|\Delta g| > 1$ mag among any observations in SDSS and PS1
- In the SDSS DR7 quasar catalog (Schneider et al. 2010)
- Must have repeat spectra (have z, L, BH mass)

Selection	Total #	In S82
SDSS Quasars in DR7Q	105783	9528
with $ \Delta g > 1$ mag and $\sigma_g < 0.15$ mag	6348	1692
and that have BOSS spectra	1010	287
and that show variable BELs	11	8

Sample Selection of CLQ Candidates

Sample Selection of CLQ Candidates

SDSS-IV Time Domain Spectroscopic Survey

Repeat spectra for:

- 13K quasars
- 1K hypervariable quasars (|Δm|>0.7 mag)
- 3500+ quasars at *z* < 0.83

Higher z ROS CLQ -28Σ -26 -24Lower z 100 1000 Rest-frame Δt (d) Timescale.

With large sample of quasars with repeat spectra:

Spectroscopic variability as function of quasar properties

.uminosit

Spectroscopic Followup of CLQ Candidates, C. MacLeod 28

Morganson et al (2015); MacLeod et al (2017)

TDSS Repeat Quasar Spectroscopy: Early Results

TDSS Repeat Quasar Spectroscopy: Early Results

Multiepoch Sky Surveys And The Lifetime Of Quasars

- 3814 quasars in the SDSS Early Data Release and Digitized Sky Survey (Martini & Schneider 2003): quasar lifetime must be > 20,000 yr
- I.e., none seem to disappear or appear between epochs