Results from Long-Term Monitoring of an X-ray Bright TDE at Only 90 Mpc Peter Maksym Harvard-Smithsonian Center for Astrophysics Preliminary! ## Cartoon Models of TDE Evolution Roth et al, 2016 #### Following the long-term evolution of **ASASSN-14li** Discovery: Holoen et al, 2015 Above: Brown et al, 2017 #### Following the long-term evolution of **ASASSN-14li** Discovery: Holoen et al, 2015 Above, left: Brown et al, 2017 ### **ASASSN-14li:** (initially) as luminous as Mkn 231 but unobscured and half as far! Discovery: Jose et al (ATel #6777), Holoien et al (2015) Above: Miller et al, incl. WPM, SBC, SG, JG (2015) 138.1 eV O VI: O VII: 739.3 eV (He-like) O VIII: 871.4 eV (H-like) N VI: 552.1 eV (He-like) N VII: 667.0 eV (H-like) S XII: 564.4 eV S XIII: 652.2 eV S XIV: 707.0 eV S XV: 3223.8 eV (He-like) Ar XII: 618.3 eV Ca XIII: 726.6 eV Ar XIII: 686.1 eV Ca XIV: 817.6 eV (N-like) Ar XIV: 755.7 eV Ar XV: 854.8 eV (Be-like) Above: Miller et al, incl. WPM, SBC, SG, JG (2015) # Slicing and Dicing | Mission
ObsId
comment | XMM-Newton
0694651201
monitoring | XMM-Newton
0722480201
long stare | XMM-Newton
0722480201
stare (low) | XMM-Newton
0722480201
stare (high) | Chandra
17566, 17567
- | XMM-Newton
0694651401
monitoring | |---|--|--|---|--|------------------------------|--| | Start (MJD)
Duration (ks) | 56997.98
22 | 56999.54
94 | 56999.94
36 | 57000.0
58 | 56999.97, 57002.98
35, 45 | 57023.52
23.6 | | $F_{X,b}$ (10 ⁻¹¹ erg cm ⁻² s ⁻¹) | 2.7 ± 0.7 | 3.2 ± 0.4 | 3.4 ± 0.3 | 3.4 ± 0.2 | $2.5^{+0.2}_{-0.3}$ | 2.68 ± 0.08 | | $L_{X,b}$ (10 ⁴⁴ erg s ⁻¹) | 2.9 ± 0.7 | 2.2 ± 0.3 | 2.2 ± 0.2 | 2.0 ± 0.1 | $1.7^{+0.1}_{-0.2}$ | 3.2 ± 0.1 | | $F_{X,f}$ (10 ⁻¹¹ erg cm ⁻² s ⁻¹) | 1.2 ± 0.3 | 1.2 ± 0.2 | 1.07 ± 0.08 | 1.24 ± 0.08 | $1.0^{+0.1}_{-0.2}$ | 1.19 ± 0.04 | | $L_{X,f}$ (10 ⁴⁴ erg s ⁻¹) | 0.25 ± 0.06 | 0.21 ± 0.03 | 0.19 ± 0.01 | 0.21 ± 0.01 | $0.17^{+0.01}_{-0.02}$ | 0.27 ± 0.01 | | $N_{\rm H,MW}(10^{20}~{\rm cm}^{-2})$ | 2.6* | 2.6 ± 0.6 | 2.6* | 2.6* | 2.6* | 2.6* | | $N_{\rm H,HG}(10^{20}~{\rm cm}^{-2})$ | 1.4* | 1.4 ± 0.5 | 1.4* | 1.4* | 1.4* | 1.4* | | $N_{\rm H,TDE}(10^{22}~{\rm cm}^{-2})$ | 0.7 ± 0.2 | $1.3^{+0.9}_{-0.4}$ | $0.1^{+0.3}_{-0.2}$ | $0.9^{2}_{-0.3}$ | $0.5^{+0.4}_{-0.1}$ | 0.5 ± 0.1 | | $log(\xi)$ (erg cm s ⁻¹) | 3.6 ± 0.1 | 4.1 ± 0.2 | 4.1 ± 0.1 | $3.9^{+0.3}_{-0.1}$ | $3.9_{-0.2}^{+0.1}$ | 3.7 ± 0.1 | | $v_{ m rms}$ (km s^{-1}) | 130 ± 30 | 110^{+30}_{-20} | 60^{+60}_{-50} | 120 ± 20 | 120^{+40}_{-30} | 230^{+60}_{-50} | | $v_{ m shift}$ (km s^{-1}) | -180 ± 60 | -210 ± 40 | -360 ± 50 | -130^{-50}_{+70} | -500^{+60}_{-70} | -490 ± 70 | | kT (eV) | 50.0 ± 0.09 | 51.4 ± 0.1 | 50.0 ± 0.4 | 52.6 ± 0.4 | 52.6 ± 0.3 | 49.7 ± 0.9 | | Norm (10^{25} cm^2) | 5.7 ± 1.4 | 3.7 ± 0.5 | 4.0 ± 0.3 | 3.0 ± 0.2 | $2.5^{+0.1}_{-0.2}$ | 6.1 ± 0.2 | | χ^2/ν | 704.8/567 | 870.5/563 | 687.8/564 | 726.8/565 | 266.5/178 | 626.5/566 | Above: Miller et al, incl. WPM, SBC, SG, JG (2015) ## Late-time X-ray Spectroscopy ## Multi-component modeling #### (preliminary) ## Multi-component modeling (preliminary) ## Multi-component modeling # Following up the first FUV/MUV TDE spectroscopy Cenko et al, 2016 (incl. WPM) ## Not a Typical Quasar! Cenko et al, 2016 #### (preliminary) 12 July 2017 ## **Closing Thoughts** - X-ray absorption is likely more complex than previously modeled; needs more exploration. But some components are stable after ~1 year! - •Good S/N critical for multi-component models, but still lots of options to choose from. - These can make a huge difference in L_x , particularly towards L_{EUV} . - Use caution interpreting Swift XRT data: XRT can't really constrain evolving models of ultrasoft emission. - Note for the 2020 decadal: ATHENA+ wavelength resolution suffers at supersoft energies. A grating (such as on Lynx) would be a huge improvement! - •UV spectra: - Line emission damped at late times: has the wind died with the accretion rate? - Helium and semi-forbidden Nitrogen: still going strong! - But still no Lo-BELs - •More to come!