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• What do we know about AGN variability in general?  

• Are changing-look AGN and TDEs the extreme tail end of this 
distribution?  

• How can we extend theoretical progress to learn about regular to 
extreme variability in AGN? 

• What can changing-look AGN, TDEs, and microlensing teach us 
about the theory of accretion physics and the AGN/galaxy 
connection? 

• How can we devise strategies to most efficiently look for these 
phenomena with the upcoming generation of multi wavelength 
telescopes, including Pan-STARRS, PTF/ZTF, LSST, eROSITA, SKA, 
WFIRST? 

Variable AGN 2017

Extreme AGN Variability   
St. Thomas, July 2017

Aneta Siemiginowska



Extreme AGN Variability   
St. Thomas, July 2017

Aneta Siemiginowska

Variable AGN 2017
• Observations:

• surveys - finding extreme objects 
• tidal disruption events 
• changing look quasars 
• reverberation  
• microlensing
• spectroscopy 

• Analysis methods:
• power spectra 
• structure function 
• time series - damped random walk (DRW), CARMA 

• Theory: 
• AGN structure - disk, corona, clouds, torus, outflows 
• emission processes - continuum, emission lines, photoionization 
• physical processes - fueling, instabilities
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AGN Model Components

• Accretion Disk
• Hot corona
• Torus
• Clouds
• Relativistic Jet

Black Hole gravity is fundamental to the AGN Power

Artist View 

Data
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Why AGN variability?
• AGN primary emission is not resolved! 
• The variability allows us to “look inside” the AGN 

and: 
• constrain the emission region size 
• learn about energetics of the system 
• understand the AGN Physics, e.g. viscosity constraints, 

connection between different emission sites, evolution, black hole 
growth etc.



Extreme AGN Variability   
St. Thomas, July 2017

Aneta Siemiginowska

AGN  Variability

Artist View 

Data

• On the line of site 
• Occultation events - clouds, torus,       

outflows, BAL 
• Microlensing

• Intrinsic to the AGN
• Optical/UV emission 

• Continuum - Accretion flow
• Emission lines -  BLR 
• Photoionization 

• X-rays 
• Corona, hot plasma 
• Outflows (also in radio, γ-rays)  
• Reflection/irradiation 

• Dramatic events?
• TDE 
• Mergers (Haiman 2017) 
• ??
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Microlensing  
Constraints on Geometry

• Source of the variability external to the AGN 
• Monitoring multiple quasar images gives the best 

observational constraints on the emission sites in 
optical-UV and X-rays  

• References: Kochanek 2004, Pooley et al. 2007, Morgan et al 2010, 2012, Mosquera and 
Kochanek 2011, Chartas et al 2016, 



Table 9 summarizes the values we adopt for the macro
magnifications, where the total magnification mi is derived from
the estimated convergence ki and shear gi at each image

position according to m k g= - - -1i i i
2 2 1[( ) ] (see, e.g.,

Narayan & Bartelmann 1996). These estimates of ki and γ
are obtained by fitting a model for the overall potential of the

Figure 1. Stacked images of the objects in the sample. Note that the angular scale is not uniform.
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X-ray Images of  Lensed Quasars  
observed with Chandra

3.2. Root-mean-square (rms) of Microlensing Variability

Microlensing flux variations occur as the stars in the lens
galaxies move relative to the background source, producing a
complex variability pattern. Here we want to explore the rms of
the microlensing amplitude as an observable that can
potentially be related numerically to the physical properties
of the lens system. This is a reasonable assumption since a
small source crossing a region with high density of caustics will
show larger flux variations. If c tBA i( ) is the microlensing

amplitude (as defined in Equation (5)) of a certain image pair at
epoch ti, then we define
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Figure 3. Flux ratios for HE 0435−1223 on a magnitude scale. Continuous blue (dashed green) curves show the hard (soft) emission. The orange dashed horizontal
lines represent the baseline ratios.

Figure 2. Flux ratios for QJ 0158−4325 on a magnitude scale. Continuous blue (dashed green) curves show the hard (soft) emission. The orange dashed horizontal
lines represent the baseline ratios.
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Microlensing Constraints  
Size of the Optical Emission Region

Pooley et al 2007,  Morgan et al 2010, 2012 
Mosquera et al 2011 

Thin disk
Best fit

Region is LARGER than the one predicted by 
the standard Shakura-Sunyaev disk
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358 Chartas et. al.: Gravitational lensing size scales for quasars
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Fig. 1 X-ray half-light radii of quasars as determined from our
microlensing analysis versus their black hole masses.

X-ray emission region to have an upper limit of log(r1/2/cm)
= 15.33 (95 % confidence), a low inclination angle is pre-
ferred statistically, the mean mass of the stars in the lensing
galaxy, ⟨M⟩, ranges between 0.1 and 0.4 M⊙ and the slope
of the size-wavelength relation r1/2 ∝ λ

ξ is ξ = 1.0+0.30
−0.56. The

majority of the observed continuum X-ray emission is found
to originate within ∼30rg, assuming a black hole estimate of
MBH = 5.9×108 M⊙ based on the width of the Hβ line (As-
sef et al. 2011). Based on this black hole mass estimate the
gravitational radius of HE 1104−1805 is rg = 8.7×1013 cm.

In MacLeod et al. (2015), we analyze the light-curves
of the z = 1.524 quasar SDSS 0924+0219 using static mi-
crolensing magnification patterns. SDSS J0924+0219 has
been observed at a variety of wavelengths ranging from the
near-infrared to X-ray. Our microlensing analysis in this
system constrains the soft-X-ray, UV, and optical half-light
radii to be 2.5+10

−2 ×1014 cm, 8+24
−7 ×1014 cm, and ∼ 5+5.

−2.5×1015

cm, respectively. Assuming the Mg II based black-hole esti-
mate of MBH = 2.8×108 M⊙, the majority of the soft X-ray
emission of SDSS 0924+0219 originates within ∼30rg. The
gravitational radius of SDSS 0924+0219 is rg = 4.12×1013

cm.
In Dai et al. (2010) and Chartas et al. (2009), we analyze

the light-curves of the z = 0.658 quasar RX J1131−1231.
We find the X-ray and optical half-light radii to be
2.3×1014 cm and 1.3×1015 cm, respectively. These sizes
correspond to ∼ 26rg and ∼ 147rg, respectively.

An important result found in all microlensing studies is
that optical sizes of quasar accretion disks as inferred from
the microlensing analysis are significantly larger than those
predicted by thin-disk theory. Specifically, measurements of
the radius of the accretion disk at 2500 Å rest-frame indicate
that the sizes obtained from microlensing measurements are
2–3 times larger than the values predicted by thin-disk the-
ory (e.g., Morgan et al. 2010; Mosquera et al. 2013).

In Fig. 1 we present the X-ray half-light radii of quasars
from recent microlensing studies of lensed systems ob-
served as part of our monitoring program (MacLeod et al.
2015; Blackburne et al. 2014, 2015; Mosquera et al. 2013;
Morgan et al. 2008, 2012; Dai et al. 2010; Chartas et al.
2009). Included in Fig. 1 are the uncertainties of the black-
hole mass estimates and uncertainties in the size estimates.
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Fig. 2 Evolution of the Fe Kα line possibly caused by the motion
of a magnification caustic as it moves away from the center of the
black hole.

The X-ray sizes of the quasars in our sample are found to
be close to the sizes of their innermost stable circular or-
bits. Assuming that most of the X-ray emission in the band
detected originates from the hot X-ray corona, these results
indicate that the corona is very compact and not extended
over a large portion of the accretion disk.

3 Estimating the innermost stable circular
orbit using microlensing

RX J1131−1231 has been monitored 38 times over a pe-
riod of 10 years with the Chandra X-ray Observatory. As
reported in Chartas el al. (2012), redshifted and blueshifted
Fe Kα lines have been detected in the spectra of the lensed
images.

In Fig. 2 we show the evolution of the red and blue com-
ponents of the Fe Kα line possibly caused by the motion of
a magnification caustic as it moves away from the center
of the black hole. We interpret the shift of the Fe Kα line
as resulting from general relativistic and special relativis-
tic Doppler effects. As shown in Fig. 3, the two redshifted
iron lines in the 2007 January 1 observation are each de-
tected at the ≥ 99 % confidence and the iron lines in the 2007
February 13 observation are each marginally detected at the
≥ 90 % confidence level (Fig. 3).

c⃝ 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.an-journal.org

Chartas et al. 2016, 2017
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Disk truncation? Fe Kα line at R < 8.5rg
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AGN (Quasars) Innermost geometry

• Corona (X-rays) is more compact than 
the optical-UV (disk) 

• Optical-UV disk more extended than 
the standard thin disk.



Non-standard  
Disk in optical

Corona/X-rays
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AGN Timescales 

• Light crossing time at 100 rs 
   tlc = 1.1 M8 R100rS 

days 

• Orbital 
torb = 104 M8 (R100rS )

3/2 days

• Thermal (note the viscosity dependence) 
tth= 4.6 (α0.01)-1 M8 (R100rS )

3/2 years

R100rS = R /100rS - radius in 100rs = 2 GMbh/c2

M8 = Mbh /108Msun

Note  =>  tth  ~ (h/r)2tvisc



Accretion Disk Instabilities

The ionization instability is characteristic of all accretion
disks, but the range of accretion rates (i.e., the location of the
S-curve on the T-! plane) depends on the chosen disk radius.
We can invert this problem and say that for a fixed external
accretion rate the instability will appear only for a certain
range of radii. At larger radii the disk is on the lower stable
branch, while at lower radii it is on the higher, also stable
branch. Simple analytical formulae for the unstable zone were
provided by Siemiginowska et al. (1996) and applied by
Menou & Quataert (2001) in their analysis.

In Figure 3 we show the radial extension of the unstable zone
as a function of the accretion rate (in Eddington units), calcu-
lated numerically from our disk model. The position of the
instability zone depends on the mass of the central object, so we
choose values representative for all objects from CVs to AGNs
with a large black hole mass. The horizontal slices of the shaded
region correspond to the accretion rates for which the disk is
unstable at a particular radius. For ṁ ! 0:01 (an accretion rate
typical for many objects), the instability zone is located at
"105RSchw for a CV, at "2# 103RSchw forM " 106 M$, and at
"500RSchw for an extremely massive black hole of M ¼ 3 #
109 M$, where RSchw ¼ 2GM=c2 is the Schwarzschild radius.

Time evolution of the unstable part of the disk proceeds
roughly in the form of oscillations between the upper and the
lower stable branches. As argued by Gammie & Menou
(1998), high-temperature upper-branch conditions are always
favorable for the development of efficient MRI, and high
values of viscosity are appropriate there. Lower-branch con-
ditions are different, and the MRI mechanism may not be
efficient. Therefore, we perform our self-consistency check,
paying particular attention to the lower-branch solutions at the
vicinity of the turning point A.

2.1. Coupling of the Magnetic Field with the Gas

The behavior of the magnetic field is governed by the fluid
conductivity !. The time-dependent magnetic field in the disk

is described by the equation

@B

@t
¼ rrrrrrrrrrrr### v### Bð Þ þ "rrrrrrrrrrrr2 ### B ð6Þ

(Parker 1979), where " ) c2=4#! denotes resistivity. The
characteristic diffusion time in which the initial configuration
of the magnetic field will decay is equal to $ ¼ L2=", where L
indicates the characteristic spatial scale. For timescales short
in comparison with $ , the second term in equation (6) can be
neglected and the magnetic field lines are frozen into the gas.
The magnetic Reynolds number, defined as

ReM ¼ v$

L
; ð7Þ

can be used to distinguish between two cases: (1) the field
lines are diffused within the disk and (2) the lines are frozen in
and carried along with the matter. Here we identify the ve-
locity v with the sound speed in the disk and the length L of
the magnetic field spatial variations with the disk thickness, as
commonly used in simulations (see, e.g., Hawley et al. 1996;
Gammie & Menou 1998).

In addition to the ohmic diffusion, the ambipolar diffusion
may also be important. The ambipolar Reynolds number is
defined as

ReA ¼ %ni
"

; ð8Þ

where %ni is the frequency of collisions between ions and
neutral particles.

We can calculate the both Reynolds numbers locally in the
disk. In order to determine the resistivity, " ¼ c2me=4#e2ð Þ

Fig. 2.—Stability curve calculated for the disk around a supermassive black
hole of M ¼ 3# 109 M$ at the radius R ¼ 300RSchw. The viscosity parameter
is & ¼ 0:1. Point A is the starting point of the ionization instability cycle, and
the instability ends at point B.

Fig. 3.—Radial extension of the ionization instability zone as a function of
the accretion rate. The contours correspond to the turning points A and B on
the S-curve (see Fig. 2). The thick solid line marks the transition radius,
resulting from the ADAF prescription (see text). The black hole mass is
M ¼ 1 M$ (top contour), 106 M$ (middle contour), and 3# 109 M$ (bottom
contour). The viscosity parameter is & ¼ 0:1.
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The ionization instability is characteristic of all accretion
disks, but the range of accretion rates (i.e., the location of the
S-curve on the T-! plane) depends on the chosen disk radius.
We can invert this problem and say that for a fixed external
accretion rate the instability will appear only for a certain
range of radii. At larger radii the disk is on the lower stable
branch, while at lower radii it is on the higher, also stable
branch. Simple analytical formulae for the unstable zone were
provided by Siemiginowska et al. (1996) and applied by
Menou & Quataert (2001) in their analysis.

In Figure 3 we show the radial extension of the unstable zone
as a function of the accretion rate (in Eddington units), calcu-
lated numerically from our disk model. The position of the
instability zone depends on the mass of the central object, so we
choose values representative for all objects from CVs to AGNs
with a large black hole mass. The horizontal slices of the shaded
region correspond to the accretion rates for which the disk is
unstable at a particular radius. For ṁ ! 0:01 (an accretion rate
typical for many objects), the instability zone is located at
"105RSchw for a CV, at "2# 103RSchw forM " 106 M$, and at
"500RSchw for an extremely massive black hole of M ¼ 3 #
109 M$, where RSchw ¼ 2GM=c2 is the Schwarzschild radius.

Time evolution of the unstable part of the disk proceeds
roughly in the form of oscillations between the upper and the
lower stable branches. As argued by Gammie & Menou
(1998), high-temperature upper-branch conditions are always
favorable for the development of efficient MRI, and high
values of viscosity are appropriate there. Lower-branch con-
ditions are different, and the MRI mechanism may not be
efficient. Therefore, we perform our self-consistency check,
paying particular attention to the lower-branch solutions at the
vicinity of the turning point A.

2.1. Coupling of the Magnetic Field with the Gas

The behavior of the magnetic field is governed by the fluid
conductivity !. The time-dependent magnetic field in the disk

is described by the equation
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(Parker 1979), where " ) c2=4#! denotes resistivity. The
characteristic diffusion time in which the initial configuration
of the magnetic field will decay is equal to $ ¼ L2=", where L
indicates the characteristic spatial scale. For timescales short
in comparison with $ , the second term in equation (6) can be
neglected and the magnetic field lines are frozen into the gas.
The magnetic Reynolds number, defined as

ReM ¼ v$

L
; ð7Þ

can be used to distinguish between two cases: (1) the field
lines are diffused within the disk and (2) the lines are frozen in
and carried along with the matter. Here we identify the ve-
locity v with the sound speed in the disk and the length L of
the magnetic field spatial variations with the disk thickness, as
commonly used in simulations (see, e.g., Hawley et al. 1996;
Gammie & Menou 1998).

In addition to the ohmic diffusion, the ambipolar diffusion
may also be important. The ambipolar Reynolds number is
defined as

ReA ¼ %ni
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; ð8Þ

where %ni is the frequency of collisions between ions and
neutral particles.

We can calculate the both Reynolds numbers locally in the
disk. In order to determine the resistivity, " ¼ c2me=4#e2ð Þ

Fig. 2.—Stability curve calculated for the disk around a supermassive black
hole of M ¼ 3# 109 M$ at the radius R ¼ 300RSchw. The viscosity parameter
is & ¼ 0:1. Point A is the starting point of the ionization instability cycle, and
the instability ends at point B.

Fig. 3.—Radial extension of the ionization instability zone as a function of
the accretion rate. The contours correspond to the turning points A and B on
the S-curve (see Fig. 2). The thick solid line marks the transition radius,
resulting from the ADAF prescription (see text). The black hole mass is
M ¼ 1 M$ (top contour), 106 M$ (middle contour), and 3# 109 M$ (bottom
contour). The viscosity parameter is & ¼ 0:1.
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Janiuk & Czerny 2011

2188 A. Janiuk and B. Czerny

Siemiginowska, Czeny & Kostyunin (1996) and Janiuk et al. (2004),
and they were applied to statistics of AGN by Siemiginowska &
Elvis (1997). Menou & Quataert (2001) and Hameury, Viallet &
Lasota (2009) argued that the amplitude of such outbursts will be
small but the evaporation of the inner disc enhances the amplitude
considerably (Janiuk et al. 2004) and prolongs the quiescent state
(Hameury, Viallet & Lasota 2009).

In this case the situation is much similar to that shown above, as
the disc cycles between two states. The hot and mostly ionized state
of a large local accretion rate is intermittent with a cold, neutral state
of a small local accretion rate. Again, the quantitative outcome of
the model is governed by the assumed external (mean) accretion
rate, viscosity and mass of the central object.

2.3 Location of the unstable zones

We calculated the steady-state models of the accretion disc struc-
ture, for two exemplary values of the black hole mass, characteris-
tic for Galactic sources (10 M⊙) and AGN (108 M⊙). The models
are based on the vertically averaged equations for the energy bal-
ance between the viscous heating and radiative cooling as well as
advective cooling and hydrostatic equilibrium. The heating term,
governed by the viscosity parameter α, is in the radiation-pressure-
dominated region assumed proportional either to the total pressure
or to the square root of the total times the gas pressure. In the gas-
pressure-dominated region, located at larger distances, heating is
assumed proportional only to the gas pressure. We calculate here
the vertical profiles of temperature, density and pressure, using the
opacity tables that cover the temperature range relevant for partial
hydrogen ionization, including the presence of dust and molecules
(see details in Rożańska et al. 1999).

The basic parameter of each stationary model is the global (ex-
ternal) accretion rate, through which we determine the total energy
flux dissipated in the disc at every radius r. Once the effective tem-
perature and surface density are determined at every disc radius,
we find the stable solutions, i.e. the accretion rates for which the
slope of T − " (or Ṁ − ") relation is positive, and the unstable
solutions, with the negative slopes. In other words, the ‘S curve’
is plotted locally at a number of disc radii, and we search for the
critical ṁ points at which the curve is bending. These points limit
the maximum and minimum values of accretion rates for which at
a given radius the disc will be unstable. In turn, we determine the
range of radii, for which at a given global accretion rate the disc
is unstable first due to the radiation pressure and then due to the
ionization instability.

For the latter, the unstable strip is located at the outskirts of the
disc. Obviously, if the instability arises at the outer disc, the front
will then propagate inwards to much smaller radii. However, if the
disc size is smaller than the inner edge of the unstable strip plotted
in Fig. 1, then no ionization instability outbursts should take place.
Our results, based on the detailed vertical structure calculations,
are consistent with the simplified formulae given in the appendix
of Lasota (2001), with respect to the inner boundary of the ioniza-
tion instability strip. The outer edge we determined is somewhat
larger, due to a different opacity table in our model which includes
absorption on molecules, e.g. molecular hydrogen, as described in
Rożańska et al. (1999).

In Fig. 1 we show the maps of the disc instabilities for the two
chosen black hole masses, on the plane radius versus global accre-
tion rate (in dimensionless units). In addition, we distinguish the two
possible stabilizing mechanisms for the radiation pressure instabil-
ity: the heating prescription and the possibility of energy outflow to

Figure 1. The extension of the radiation pressure (solid and dotted lines)
and hydrogen ionization (green, dashed lines) unstable zones, depending
on mean accretion rates (Eddington units). The results are for two heating
prescriptions: αPtot (blue, solid lines) and α

√
PgasPtot (red, dotted lines).

The crossed regions mark the results for a non-zero fraction of jet power,
described by equation (1) with A = 25. The black hole mass is M = 1 ×
108 M⊙ (bottom) and M = 10 M⊙ (top). The viscosity is α = 0.01.

the jet. The latter is parametrized by the following function:

ηjet = 1 − 1
1 + Aṁ2

(1)

and the jet outflow acts as a source of additional cooling (Nayakshin
et al. 2000; Janiuk et al. 2002).

The jet outflow reduces the size of the unstable zone for large
accretion rates as well as limits the instability to operate below
some threshold maximum ṁ. This rate is of course sensitive to our
adopted parameter for the jet strength. Fig. 1 shows the case of a
very strong jet, with A = 25, and in this case the limiting accretion
rate is about 20 per cent of the Eddington rate. For a 10 times weaker
jet, the limiting accretion rate is about three times larger.

C⃝ 2011 The Authors, MNRAS 414, 2186–2194
Monthly Notices of the Royal Astronomical Society C⃝ 2011 RAS
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Figure 3. Exemplary evolution of the disk bolometric luminosity under the radiation pressure instability (Trφ ∝ α(PgasPtot)1/2) for two exemplary values of the
accretion rate ṁ (in the Eddington units), and different viscosity parameter α. Black hole mass is taken as M = 108 M⊙.
(A color version of this figure is available in the online journal.)

typical timescales are then consistent with the ones postulated by
Reynolds & Begelman (1997). These timescales give the limits
for statistical studies of the galactic activity, and we devote a
part of the Discussion to this issue (see Section 5.3).

However, when the accretion rate approaches the value for
which the instability ceases to exist, the trend with the accretion
rate is reversed and the time separation goes to infinity. The
limiting value of the accretion rate is specific for the given black
hole mass. This is seen as the lower branches of the constant
separation time lines. The parameter range (accretion rate and
black hole mass) where this happens is relatively narrow. At
still lower accretion rates, for a given mass, the disk is stable
and there are no outbursts. Such a source should evolve in a
continuous rather than intermittent way.

5. DISCUSSION

We study the possibility that the observed short lifetimes
of (some of) GPS sources reflect the intermittent activity of
the nucleus caused by the radiation pressure instability in

the accretion disk. We model the disk outbursts using Trφ ∝
α (PgasPtot)1/2 viscosity law, as previously done by Merloni
& Nayakshin (2006) in the context of Galactic sources. This
parametric approach seems to be quite successful. For the
smaller of the two values of the considered viscosity parameter
(α = 0.02), supported by the previous studies of the AGN
variability (Siemiginowska & Czerny 1989; Starling et al. 2004),
the theoretically obtained outburst durations for a range of
black hole masses and accretion rates are comparable to the
ages of the radio structures determined for our sample of 72
GPS/CSO objects. Therefore, the radiation pressure instability
mechanism offers an interesting possibility for the intermittency
of young radio sources, as postulated by Reynolds & Begelman
(1997) to explain the apparent overabundance of such. The
time separations between outbursts obtained from our model are
also comparable to those requested by Reynolds & Begelman.
However, our approach leaves several open questions/problems
which should be addressed in the future in order to establish the
theoretical basis for the intermittent character of jet activity. We
discuss these problems below.
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Figure 4. Contour maps of the constant outburst duration time, in the black
hole mass vs. accretion rate (Eddington units) plane. The outburst durations are
given for each curve in years. The viscosity parameter is taken as α = 0.02.
(A color version of this figure is available in the online journal.)

Figure 5. Contour maps of the constant outburst duration time, in the black hole
mass vs. accretion rate (in Eddington units) plane. The outburst durations are
given for each curve in years. The viscosity parameter is taken as α = 0.2.
(A color version of this figure is available in the online journal.)

5.1. Radiation Pressure Instability

On the theoretical side, it is still unclear whether the radia-
tion pressure instability operates in accretion disks. If the disk
viscosity is parameterized as in the classical paper of Shakura
& Sunyaev (1973), the domination by radiation pressure leads
to the thermal (Pringle et al. 1973) and viscous (Lightman &
Eardley 1974) instability when the ratio of the gas pressure to
the total pressure drops below 0.4 (Shakura & Sunyaev 1976).
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Figure 6. Age vs. luminosity diagram for all the sources in the sample. The
sources with measured black hole masses are shown by red large diamonds. For
those the younger sources show higher luminosity for the same range of mass.
More mass measurements are needed to test the radio luminosity vs. age trends.
Other sources with synchrotron age determination are shown with green smaller
diamonds, and sources with kinematic age determination are shown with blue
squares. The dashed lines indicate the duration of an outburst (see Equation (8))
for α = 0.02 and the anticipated bolometric correction factor 300.
(A color version of this figure is available in the online journal.)
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Figure 7. Contour maps of the constant outburst separation time, in the black
hole mass vs. accretion rate (in the Eddington units). The outburst durations are
given for each curve, in log(T ) [yr]. The viscosity parameter is α = 0.02. A
region of the parameter space below the lowest curve shows shows stable model
for accretion rates below the threshold.
(A color version of this figure is available in the online journal.)

If the viscosity scales with the gas pressure, a stable solution
for the disk structure is obtained (Sakimoto & Coroniti 1981),
and any intermediate scaling limits the parameter range for the
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If the viscosity scales with the gas pressure, a stable solution
for the disk structure is obtained (Sakimoto & Coroniti 1981),
and any intermediate scaling limits the parameter range for the
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2. NUMERICAL MODEL AND CONVERGENCE

In this section we describe the construction and convergence
properties of our numerical model. In brief, we evolve a three-
dimensional ideal MHD simulation in order to study the local and
global dynamics of a geometrically thin (constant opening angle
h/r = 0.1) accretion disk. Given our focus on the time variability
of the accretion flow, the crux of our problem is the evolution of
the MHD turbulent dynamics and how it influences the long-
timescale behavior of the disk. Thus, we concentrate our
computational resources into the high-spatial resolution and the
long duration of the simulation. We demonstrate below that the
numerical grid is of high enough resolution that the macroscopic
behavior of the disk turbulence is converged and insensitive to
increases in resolution. As a penalty, we simplify the physics to
the bare minimum. We employ non-relativistic ideal MHD, and a
pseudo-Newtonian gravitational potential to emulate the dyna-
mical effects of a general relativistic potential, including the
presence of an inner-most circular orbit (ISCO). We use a simple
cooling function to keep the disk thin, but otherwise neglect all
radiation physics. Renderings of density and magnetic turbulent
structure of our fiducial disk simulation are shown in Figure 1.
Table 1 details the simulations used in this work.

2.1. Simulation Setup

Our simulation employs the finite-difference MHD code
Zeus-MP v2 (Stone & Norman 1992a, 1992b; Hayes

et al. 2006). Zeus-MP solves the differential equations of ideal
compressible MHD,
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to second-order accuracy in space. The method of constrained
transport is used to maintain zero divergence in the magnetic
field to machine precision. The explicit integration time step is
set by the usual Courant conditions, and is first-order accurate
in time.
We begin by defining our fiducial simulation. The simulation

domain is covered by spherical coordinates (R, θ, f) and spans
R r r4 , 145 ,g g[ ]Î 2 0.5, 2 0.5 ,[ ]q p pÎ - + 0, 3[ )f pÎ ,
as shown in Figure 1. The zone aspect ratio is approximately
ΔR : RΔθ : RΔf = 2 : 1 : 2 and each scale height is resolved
with 28 θ-zones. Outflowing boundary conditions were used
for the ±R and ±θ boundaries, and periodic boundary
conditions were used in the f direction. The most trivial
implementation of the outflowing boundary conditions in
ZEUS-MP does not enforce the divergence free condition
required of the magnetic field at the boundary interface.
Therefore, we modified the standard ZEUS-MP boundaries to
conserve B 0·� = across the R- and θ-boundaries.
The simulation domain was broken into a well-resolved

inner region (r < 45 rg), used for our analysis, and an outer
region with poorer resolution to act as a gas reservoir. The gas
reservoir mitigates the effect of secular decay from the draining
of material from the disk over the course of the simulation. The
radial spacing in the inner region logarithmically increases in R
from 4–45 rg. In all, the simulation has NR × Nθ ×
Nf = 512 × 288 × 128 = 1.89 × 107 zones in this region.
The ΔR spacing in the outer region logarithmically increases
from 45–145 rg and a total of NR × Nθ × Nf =
128 × 288 × 128 = 4.72 × 106 zones in this region.
We approximate the gravitational field around a nonrotating

black hole with a pseudo-Newtonian gravitational potential
(Paczyńsky & Wiita 1980) of the form:

GM
R r

r
GM
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, . 9
g

g 2
( )F = -

-
º

With this potential, several important aspects of a general
relativistic gravity field are captured, including an ISCO (at 6
rg) and the qualitative change of radial shear in the disk.
A γ = 5/3 adiabatic equation of state is used for the gas. An

initially axisymmetric thin disk was initialized with constant
midplane density and radially decreasing pressure corresponding

Figure 1. Snapshots of ρ (a) and B2∣ ∣ (b) in the fiducial simulation used in our
analysis at t = 0, the point we take to be the beginning of scientific analysis
after the initial transient behavior has died off and the turbulence has saturated.
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We can also quantify the asymmetry of the distribution by
measuring skewness. Skewness is the third momentum of the
distribution and is given by,

X N
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g
m

s
=

-
=

where μ is the mean, σ is the standard deviation, and N is the
number of data points. The distribution of Ṁ at the ISCO has a
value of γ1 = 1.08, indicating a strongly positively skewed
distribution.

5.3. Correlations Between M, ˙a , and Σ

We will now look at the correlations in α, Ṁ , and Σ to verify
that Ṁ does indeed scale with both α and Σ. It is typically
assumed α is independent of Σ, thus, according the canonical
disk equation, Ṁ is expected to be higher when α and Σ are
larger. However, there is a degeneracy between these three

parameters and we must remove the stochasticity of the third in
order to tease out relationships between any two quantities. The
easiest way to find the underlying trend is to simply bin the
data, which essentially averages out the stochasticity of the
variable we are not interested in. Since there are radial
gradients in the disk, we focused on the behavior at r = 15 rg.
Ten bins were used with 70 data points per bin. The bars
indicate the standard deviation of the bin.
Figure 16 shows the Ṁ - S, α − Σ, and Ṁ a-

correlations. We find that, indeed, the mass accretion rate
scales with both α and Σ, validating the a priori assumptions
that went into the phenomenological motivation of the
propagating fluctuations model. The Pearson correlation
coefficient between Σ and Ṁ is 0.87 and between α and Ṁ
it is 0.70, indicating these are both statistically strong
correlations. Additionally, the correlation coefficient of α with
Σ is r = −0.66, which is considered a moderately strong anti-
correlation. While the strong positive correlations of Ṁ with α

Figure 13. Spacetime diagrams of Σ (top panel), Ṁ (middle panel), and logarithm of the synthetic emission (bottom panel). Given the scale-free nature of the
simulation, units are arbitrary and dimensionless. The preservation of fluctuations in the accretion flow that gives the appearance of “propagating fluctuations” is
readily observed in the spacetime diagram of Σ and Ṁ . While a simple estimate of the radiation, our emission proxy does track the other two quantities well,
demonstrating that the behavior of the accretion flow will be observable.
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and Σ confirm the underlying assumptions of the propagating
fluctuations model, the negative α–Σ correlation isslightly
different than expected. We believe the anti-correlation
between α and Σ can be attributed to the magnetic buoyancy
in the disk. In the higher density regions, pressure balance in
the disk displaces magnetically dominated (lower β) gas
upwards, decreasing the local field strength, thereby decreasing
α and causing the negative trend.

5.4. Radial Coherence

The strongest evidence for propagating fluctuations in our
simulation comes from radial coherence and frequency
dependent phase shifts of the Ṁ variability. At the heart of
the propagating fluctuations model is the predication that
modulations in the accretion rate at larger radii will be seen at
the inner radii with a time-lag set by the viscous inflow time.

The coherence function provides the cleanest way to assess the
causal connection in the disk.
Adopting the convention of (Nowak et al. 1999a), we will

consider Ṁ at two radii, s t1( ) and s t2 ( ), with Fourier transforms
S f1( ) and S f2 ( ), respectively. The coherence of these two
signals, given by
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is a real-valued positive function that has a maximum of unity
if and only if s t2 ( ) is related to s t1( ) via simple a linear transfer
function,
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where r, is some transfer function. In the other extreme, γ2 = 0
implies no linear relationship between s t1( ) and s t2 ( ). In
general, γ2 can be considered a measure of the fraction of
variability in s t2 ( ) that is coherently related to s t1( ), and has
values between 0 (completely incoherent) and 1 (perfectly
coherent). For non-zero coherence, we can compute the cross-
spectrum S f S f1 2( ) ( )* . The complex phase f( )F of the cross
spectrum gives the frequency-dependent phase shift of the
coherent parts of s t1( ) and s t2 ( ).
The coherence function and phase shifts are shown in

Figure 17. The coherence function was calculated with the
ISCO taken to be the inner, reference radii. The Ṁ “signal” was
broken into three segments for averaging and the coherence
function was calculated with each radial bin. Similar to
Cowperthwaite & Reynolds (2014), we find the coherent regions
at frequencies below that of the local viscous frequency,
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v R
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The viscous time can hence be interpreted as a minimum
timescale on which inward communication of flow fluctuations
can occur.
From the average phases, time-lags can be determined. The

frequency-dependent time lag at a given radii is

Figure 14. Ṁ at the ISCO (left panel) and its PSD (right panel). The PSD is best fit by a single power law with a slope of Γ = −1, shown by the blue line.

Figure 15. Histogram of Ṁ at the ISCO fit with a normal (red line) and log-
normal (blue line) distribution. The log-normal distribution provides a
superior fit.
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6. PROXY LIGHT CURVE ANALYSIS

We now discuss the global behavior of our emission proxy
and how the propagating fluctuations in Ṁ might appear as a
photometric variability. The full details of the radiation
produced through the interaction of the accretion flow with
the various emission mechanisms can only be captured by
including more realistic radiation physics, which our simulation
lacks. Nevertheless, we can use our emission proxy to explore
the emission variability in a broad sense. In particular, we want
to determine if the structure of the Ṁ variability can be easily
observed when the emission is integrated over the entire disk.
The flux we observe from GBHBs and AGNs is, in effect, the
integrated emission from a range of radii that evolve on
timescales proportional to their dynamical times. Conse-
quently, there is the possibility some of the variability could
be smoothed out as lower-frequency variability from larger
radii can wash-out higher-frequency variability. Given how
clear the nonlinear signal is in astrophysical sources, we want
to check if it is reproduced by the variability of the emission
proxy from our simulation.

Figure 20 shows the synthetic light curve and radial profile
of the average emission for our disk. We created the light curve
by integrating the dissipation from the emission proxy over the
well-resolved region of the simulation (4–45 rg). Given our
radial range, the synthetic light curve is composed of signals
from radii with dynamical times that vary by a factor of 37.5,
imitating observation with a broadband filter. Several aspects of
the disk emission are apparent. First, the light curve is similar
to the time trace of Ṁ at the ISCO. The signal is aperiodic, and
flares in the light curve correspond to large accretion events.
Second, any flares in the light curve quickly decay down to a
well-defined, stationary average. The property of mean-
reversion is of statistical interest as a way to model its
behavior. Finally, and worth the most discussion, is the
dominate role emission from the inner region plays in driving
variability. This is more clearly seen in the radial profile of the
emission per unit area of the disk, but can also be inferred by
the high-frequency flares. In Figure 20 the disk profile of

Shakura & Sunyaev (1973) is shown for comparison. The two
profiles trace each other well at larger radii, but diverge in the
innermost regions. In the canonical α-disk, the energy flux goes
to zero at the ISCO because it was believed at the time that no
torques could be felt from the gas in the inner plunging region.
MHD simulations have shown that, in fact, torques can be felt
across the ISCO and radiation can originate from closer to the
black hole than the ISCO (Hawley & Krolik 2001, 2002;
Krolik & Hawley 2002). In addition to the physical effect of
torques spanning the ISCO region, there may also be a
nonphysical contribution to our profile because we assume any
energy from stresses is immediately converted into radiated
energy. In reality, there is a time delay between the injection
and the dissipation as the energy is transported through the
turbulent cascade. In the inner regions near the black hole the
material could be rapidly swept into the hole before it has had
time to completely radiate the injected energy. This would lead
to an overestimation of the emission from the inner regions by
our emission proxy due to this advection of energy.

6.1. Signatures of Propagating Fluctuations

In our analysis of the mass accretion rate in the simulation
we found the variability of Ṁ had near-identical structure to the
universally observed flux variability from black hole systems.
Real disk emission is much more complicated than what is
captured by our emission proxy, however, the following
analysis serves to provide a proof of concept demonstration that
the Ṁ fluctuations in our simulation will translate into
fluctuations in disk luminosity. While rudimentary, we will
analyze the synthetic emission using the diagnostics used in
Section 5.
Figure 21 (upper and middle panels) shows the flux

histogram and rms-flux relationship for the total (“broad-
band”) proxy light curve shown in Figure 20. The preferred fit
to the flux histogram is a log-normal distribution with
parameters μ = −5.7 and σ = −0.39. The χ2/dof of this fit
is 18.1/24 which is statistically well-fit and much better than
that of a normal distribution with χ2/dof of this fit is 98.9/24.

Figure 20. Synthetic light curve (left panel) and disk emission profile (right panel, blue dots). The integrated synthetic emission from the disk displays large, rapid
fluctuations and behaves similarly to Ṁ across the ISCO. Qualitatively, the variability is quite similar to the variability of real astrophysical black hole systems. The
rapid variability indicates the inner regions of the disk have the largest contribution to the variability, which is confirmed by the radial profile of the synthetic emission
proxy.
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Figure 2. (a) Uncorrected light curve. Bad data (in red) were eliminated and seasonal jumps were corrected as discussed in the text. (b) Corrected light curve. (c)
Twenty day (960 cadence) snippet from Q11, showing the quality of the Kepler data. This time range is shown with a horizontal blue line in panel (b).
(A color version of this figure is available in the online journal.)

the second uses a continuous random process model fitted in the
time domain to infer the PSD.

3.1. Periodogram Analysis

The first approach used the standard periodogram of the full
data set to directly estimate the PSD. Gaps within each segment
were filled by interpolation (using the LOWESS method;
Cleveland 1981) to give one evenly sampled light curve with
a sampling of ≈29.4 minutes. The light curve was end-matched
(Fougere 1985) to suppress the effects of spectral “leakage”
(Uttley et al. 2002). This involves subtracting a linear term such
that the mean fluxes for the first and last 20 data points are the
same The resulting periodogram is shown in Figure 3.

At high frequencies, the power spectrum flattens, as expected
from independent (white) flux measurement errors, but the
observed level is higher by a factor ≈1.57 than the expected
level given the pipeline errors, suggesting the flux measurement
errors are 25% larger than the pipeline errors. Further, the
PSD rises slowly from 10 day−1 down to 1 day−1, which
could be explained in terms of some degree of correlation
in the measurement errors, perhaps resulting from MPD. At
lower frequencies the periodogram rises steeply with decreasing
frequency and shows a bend around a timescale of ∼5 days.

We fitted simple models to the periodogram by maximizing
the likelihood to estimate of the model parameters (see, e.g.,
Vaughan 2010) using XSPEC 12.8.1 (Arnaud 1996) with the
Whittle statistic. A model comprising a simple power law plus
a constant gave a poor match to the data, with power-law slope
−3.15 and fit statistic D = −2 log(likelihood) = −270489.0
using three free parameters. Including an additional power law
to model the excess power at ∼1 day−1 improved the fit by
∆D = 157.9 using five free parameters. Including a bend in the
steep power law to a flatter slope at low frequencies (using
a simple bending power law as in Edelson et al. 2013 and
González-Martı́n & Vaughan 2012) improved the fit by a further
∆D = 231.3, and has a total of seven free parameters. The
best-fitting parameters of this model are as follows: power-law
slopes of −2.00 ± 0.12 at low frequencies and −4.51 ± 0.20
at high frequencies, with a bend at fb = 0.18 ± 0.03 day−1

(∼5.6 day timescale). The additional (unbending) power law
had a slope of −1.28 ± 0.13 and contributes significantly only
around frequencies ∼1 day−1. Replacing the simple bending
power law with a “Nuker” law (Equation (1) of Lauer et al.
2005), which includes an extra parameter to adjust the sharpness
of the bend between power-law slopes, did not significantly
improve the fit (∆D = 0.8 improvement for one additional free
parameter).
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Figure 3. Standard periodogram analysis. The data (black) have been rebinned
for display purposes only, such that the lowest-frequency data are not binned,
and at higher frequencies, data are averaged over bins spanning a factor of 1.1 in
frequency. The fits are shown in solid red at the top and residuals, computed as
(data−model)/(

√
N∗ model) at the bottom. (a) A single power law (dashed line)

plus Poisson noise (dot–dash line) model yields a poor fit with large coherent
features in the residual plot. (b) A bending power law (dashed) plus a second
power law (dotted line) plus noise model yields an acceptable fit with smaller
and better-distributed residuals.
(A color version of this figure is available in the online journal.)

3.2. CARMA-based PSD Analysis

The second analysis utilized the continuous-time autoregres-
sive moving average (CARMA) modeling technique of Kelly
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Figure 4. (a) CARMA-based periodogram using the same normalization as
Figure 3. The best estimate of the PSD is shown as a black line and the shaded
blue region shows the 95% confidence interval. Note the good agreement with
the Figure 3(b) fit (dashed red line). The feature near ∼0.3 day−1 is an artifact
of the modeling and does not indicate QPO (Kelly et al. 2014). (b) Same data
but with the y-axis multiplied by frequency.
(A color version of this figure is available in the online journal.)

et al. (2014). This method naturally handles data gaps, measur-
ing the power spectrum down to the lowest frequencies available.
The CARMA modeling technique assumes that the light curve is
a Gaussian process and that the power spectrum can be approx-
imated as a mixture of Lorentzian functions. For computational
purposes, we reduced the sampling by binning on 2.5 hr inter-
vals. We considered CARMA(p, p − 1) models and used the
deviance information criterion (DIC; Spiegelhalter et al. 2002)
to choose the value of p = 5; higher values of p produced
a worse DIC and did not lead to significantly different power
spectra, with the exception of higher uncertainty at the low- and
high-frequency ends.

The inferred power spectrum (Figure 4(a)) shows evidence
for a bending power-law shape and a flattening toward the
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(data−model)/(

√
N∗ model) at the bottom. (a) A single power law (dashed line)

plus Poisson noise (dot–dash line) model yields a poor fit with large coherent
features in the residual plot. (b) A bending power law (dashed) plus a second
power law (dotted line) plus noise model yields an acceptable fit with smaller
and better-distributed residuals.
(A color version of this figure is available in the online journal.)
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blue region shows the 95% confidence interval. Note the good agreement with
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of the modeling and does not indicate QPO (Kelly et al. 2014). (b) Same data
but with the y-axis multiplied by frequency.
(A color version of this figure is available in the online journal.)
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ing the power spectrum down to the lowest frequencies available.
The CARMA modeling technique assumes that the light curve is
a Gaussian process and that the power spectrum can be approx-
imated as a mixture of Lorentzian functions. For computational
purposes, we reduced the sampling by binning on 2.5 hr inter-
vals. We considered CARMA(p, p − 1) models and used the
deviance information criterion (DIC; Spiegelhalter et al. 2002)
to choose the value of p = 5; higher values of p produced
a worse DIC and did not lead to significantly different power
spectra, with the exception of higher uncertainty at the low- and
high-frequency ends.
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for a bending power-law shape and a flattening toward the
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• Short timescales - within one observations 

• Long timescales - monitoring observations 

• Surveys - extreme variability
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Galactic Binary Black Holes: 
 State Transitions 

soft

hard
GBH full outburst during a year in X-
rays (here XTE data) shows a large 
increase in bolometric luminosity  
and a significant variation in the X-ray 
spectrum

Sobolewska, Siemiginowska & Gierlinski 2011

250 days

1 year => 107 years for AGN 108 Mbh
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ity

more from Jason Dexter today

Mbh ~ 10 Msun
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Spectral Similarities

Soft

Hard

Teff(disk) ~ MBH
-1/4

GBH  X-rays AGN opt-UV 

Sobolewska, Siemiginowska & Gierlinski 2009, 2011

UV BBB 
Strong Disk

Disk?

Blackbody + Power law
Disk + Corona

Energy

νL
ν
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Type 1 AGN in Soft State

simulated

observed

simulated

observed

Sobolewska, Siemiginowska & Gierlinski 2009, 2011
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Type 1 AGN in Soft State

X-rays - corona

Optical-UV - diskdisk

corona



Svoboda, Guainazzi & Merloni  2017 (arXiv:1704.07268)

J. Svoboda et al.: AGN-GBHC states
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Fig. 3. Hardness-luminosity diagram for AGN. The coloured circles correspond to sources with constrained radio flux measurements, the colour
denoting the relative radio loudness of the source. Radio-quiet sources, which have been detected only with an upper limit are shown by cyan
triangles. The smaller green crosses correspond to sources with no available radio flux measurement. The side histograms show an average value
of the relative radio-loudness in respective bins either in hardness (top) or luminosity (right). The histograms are calculated using only sources
with constrained radio flux measurements. The plot is shown in logarithmic scale of hardness (left) for better comparison with X-ray binaries and
in linear scale (right) to show the hard-state part of the diagram in greater detail.

Fig. 4. Distribution of UV and X-ray fluxes measurements for non-
active galaxies (dark blue). The distribution of AGN is overlaid (light
grey).

UV luminosity can still be entirely due to the host galaxy, since
the host-galaxy UV contribution peaks at log LUV,host−galaxy ! 43.

Figure 5 shows the hardness-luminosity diagram for both
non-active and active galaxies together. The disc and power-
law luminosity of non-active galaxies are calculated in a simi-
lar but simpler way, as proportional to UV and X-ray luminosity
(Ldisc ≈ 2∗LUVW1, and Lpower−law ≈ 10∗L2−10keV) for all sources.
The plot is shown in a logarithmic scale in the hardness for bet-
ter clarity. The plot reveals that the non-active galaxies appear
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Fig. 5. Hardness-intensity diagram for non-active (blue crosses) and ac-
tive galaxies (the same notation as in Fig. 3).

very soft, which is the consequence of the significantly larger
contribution of the host galaxy in UV than in the X-ray domain.

In general, the level of mixing of AGN with non-active
galaxies is very low in Fig. 5. However, some non-active galax-
ies in our sample exhibit a luminosity exceeding log Ltot ≈ 43,
where low-luminosity AGN appear. This implies that the appar-
ent softness of low-luminosity AGN (log L < 44) may indeed be
due to the contribution of the host galaxy. Therefore, for these
sources it is essential to correctly estimate the host-galaxy con-
tribution. However, the effect due to the host-galaxy contamina-
tion is not easy to estimate from the available data; a possible
treatment will be discussed in Sect. 4.2.
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non-active AGN

active AGN

hardsoft
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X-ray hardness and Radio-Loudness 

Hardness = Lp/Lp+Ld 

Lp - 0.1-100 keV - corona 
Ld - disk 

Koerding et al 2006
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Summary
• Complex Emission 
• Microlensing constraints on the  geometry - not a standard disk  
• Disk Instabilities   - Radiation/Ionization   
• Similarities to XRB? 
• Finding targets to constrain the physics - surveys? evolution? 
• Kepler light curves probe the broad range of timescales 
• Discussion at the meeting - reverberation, TDE, scaling, 

methods 
• Theory?



• What do we know about AGN variability in general?  

• Are changing-look AGN and TDEs the extreme tail end of this 
distribution?  

• How can we extend theoretical progress to learn about regular to 
extreme variability in AGN? 

• What can changing-look AGN, TDEs, and microlensing teach us 
about the theory of accretion physics and the AGN/galaxy 
connection? 

• How can we devise strategies to most efficiently look for these 
phenomena with the upcoming generation of multi wavelength 
telescopes, including Pan-STARRS, PTF/ZTF, LSST, eROSITA, SKA, 
WFIRST? 

Variable AGN 2017
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